Развитие науки в эпоху возрождения и нового времени

Основным методом познания и эпоху Возрождения становится опыт, подразумевающий союз разума и чувств, настроенных на созерцание природы, которая отныне служит единственным источником подлинной мудрости. Таким образом,по мере изживания средневековых познавательных и жизненных ценностей возрожденческая мысль более не усматривает истину бытия мира за его пределами, как это было до сих пор, но помещает источник порядка мироздания внутри мира.

Первая научная революция произошла в период конца XV – XVI веков, в период, относящийся к эпохе Возрождения. Именно в это время появляется учение польского астронома Н. Коперника. Коперник обосновывает утверждение о том, что Земля не является центром мироздания. Таким образом, на смену геоцентрической (от греч.– земля) системы мира Птолемея приходит гелиоцентрическая (от греч. – солнце) система мира.

С появлением учения Н. Коперника, можно сказать, наука впервые указала на то, какую существенную роль она может играть в решении мировоззренческих проблем. Гелиоцентрическая система мира Н. Коперника подорвала устоявшиеся догматы религиозного мировоззрения, которые опирались на считавшуюся в то время неопровержимой геоцентрическую систему мира Птолемея.

Однако «революционность» этого учения проявилась не только в борьбе с религиозными догматами. Можно заметить, что гелиоцентрическая система мира основывается на предположении о том, что истинное движение, оказывается, может обладать иной наглядностью, чем та, которая дает визуальное наблюдение (ведь мы наблюдаем движение Солнца вокруг Земли, а не наоборот).

«Наконец, следует подчеркнуть и то, что в отличие от птолемеевской астрономии, опиравшейся на аристотелевскую (качественную) механику, гелиоцентрическая система не имела прочной механической базы и стимулировала её создание. Она не столько завершала старые наблюдения, сколько стимулировала новые, ибо, устранив ряд прежних противоречий и несоответствий и продемонстрировав свою способность решать сложнейшие проблемы (например, вычислять расстояние между планетами было недоступно Птолемею), она оставила целый ряд вопросов открытыми. Именно эта открытость и делала её столь привлекательной для последующих исследований.

Вторая научная революция произошла ориентировочно в XVII веке, в эпоху Нового времени. Собственно говоря, именно эту эпоху и связывают с эпохой рождения современной науки, фундамент которой был заложен такими выдающимися учеными как Г. Галилей, И. Кеплер и И. Ньютон.

В учении Г. Галилея, применявшим научные методы познания, содержались основы классической механики (например, принцип о существовании инерциальных систем отсчета и закон свободного падения тел). Кроме того, Г. Галилей открыл законы колебания маятника, экспериментально нашел вес воздуха, установил вращение солнца вокруг своей оси, обнаружил спутники у Юпитера… и этот перечень заслуг далеко не полный.

Выдающийся ученый И. Кеплер занимался исследованием небесной сферы и работал над составлением звёздных таблиц. И. Кеплер прославился, в первую очередь, формулировкой трех законов движения планет относительно солнца, которые представляли собой обобщение данных астрономических наблюдений.

Научное наследие И. Ньютона весьма обширно. Он разработал, независимо от Г.В. Лейбница, дифференциальное и интегральное исчисление, которым успешно пользовался при решении сложнейших задач в механике. Ему принадлежит открытие законов динамики и закона всемирного тяготения.



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: