Восстановительный пентозофосфатный цикл

Восстановительный пентозофосфатный цикл, или цикл Кальвина, являющийся основным путем фиксации CO2 у всех высших фотосинтезирующих организмов, функционирует уже в группе пурпурных бактерий. У цианобактерий и прохлорофит это также основной путь фиксации CO2. Последовательность ферментативных реакций, приводящих к фиксации углекислоты и образованию из нее молекулы гексозы, была расшифрована М. Кальвином (М. Calvin) с сотрудниками в 50-х гг. (рис. 77). Что в этом цикле нового, существенно отличающего его от всех реакций фиксации CO2 как гетеротрофной природы, так и функционирующих в восстановительном ЦТК? Новая химическая природа акцептора. Акцепторами CO2 во всех до сих пор описанных реакциях были органические кислоты в обычной или активированной форме. В этом цикле впервые акцептором CO2 выступает вещество углеводной природы — активированная молекула пентозы.

Рис 77. Восстановительный пентозофосфатный цикл: Ф1 — рибулозодифосфаткарбоксилаза; Ф2 — 3-фосфоглицераткиназа; Ф3 — 3-ФГА-дегидрогеназа; Ф4 — триозофосфатизомераза; Ф5 — фруктозо-1,6-дифосфатальдолаза; Ф6 — 1,6-фосфофруктозофосфатаза; Ф7 — глюкозофосфатизомераза; Ф8 — глюкозо-6-фосфатаза; Ф9 — транскетолаза; Ф10 — альдолаза; Ф11 — дифосфатаза; Ф12 — фосфопентозоизомераза; Ф13 — фосфопентозоэпимераза; Ф14 — фосфорибулокиназа. Цифры, заключенные в кружок обозначают число молекул, участвующих в реакциях (по Dagley, Nicholson, 1973)

Ферментативные пути, ведущие к синтезу пентозофосфатов, уже формировались в окислительном пентозофосфатном пути. Для восстановительного пентозофосфатного цикла уникальными являются два фермента, не участвующие в других метаболических путях: фосфорибулокиназа и рибулозодифосфаткарбоксилаза. Первый из них связан с активированием молекулы акцептора путем вторичного фосфорилирования, а второй катализирует реакцию акцептирования рибулозо-1,5-дифосфатом молекулы CO2 и последующее гидролитическое расщепление образовавшейся гексозы на 2 молекулы 3-ФГК, одна из которых в карбоксильной группе содержит углерод из CO2.

Образовавшиеся молекулы 3-ФГК затем подвергаются серии последовательных ферментативных превращений, ведущих к образованию молекулы глюкозы. Эти превращения включают реакции, известные в гликолитическом пути, но идущие теперь в обратном направлении (реакции, катализируемые ферментами Ф2 — Ф5 и Ф7 на рис. 77), и реакции, сформировавшиеся у гетеротрофов на пути синтеза глюкозы из C2- и C3- соединений для обхода необратимых реакций гликолитического пути (реакции, катализируемые ферментами Ф6 и Ф8 на рис. 77). Реакция восстановления 1,3-ФГК до 3-ФГА, катализируемая 3- ФГА-дегидрогеназой, у пурпурных и зеленых бактерий зависит от НАД-H2, а у цианобактерий и высших растений — от НАДФxH2.

Такова биосинтетическая часть цикла, ведущая к фиксации CO2 и образованию из нее молекулы гексозы. Однако чтобы функционировал этот механизм, необходимо постоянное воспроизведение молекул — акцепторов CO2. Остальные ферментативные реакции цикла служат для регенерации акцептора CO2 — рибулозо-1, 5-дифосфата и катализируются ферментами, большинство из которых функционирует в окислительном пентозофосфатном пути (ферменты Ф9 — Ф13 на рис. 77). Суммарное уравнение восстановительного пентозофосфатного цикла можно изобразить следующим образом:

Для синтеза 1 молекулы глюкозы из CO2 необходимо 6 оборотов цикла.

Таким образом, сформировавшийся для автотрофной ассимиляции CO2 механизм базируется на ферментативных реакциях, которые уже функционировали к тому времени у хемогетеротрофных прокариот. Для работы цикла необходимо было создать только две новые реакции, связанные с подготовкой акцептора и собственно акцептированием CO2.

Восстановительный пентозофосфатный цикл является основным механизмом автотрофной ассимиляции углекислоты. Последняя у большинства фотосинтезирующих эубактерий восстанавливается с помощью фотохимически образованной "ассимиляционной силы" — АТФ и восстановителя. Однако и АТФ, и восстановитель (НАДФ-H2 или НАД-H2) образуются в разных метаболических путях. Поэтому нельзя рассматривать восстановительный пентозофосфатный цикл ассимиляции CO2 строго привязанным только к фотосинтезу. У большой группы хемоавтотрофных эубактерий этот путь фиксации CO2 сочетается с темновыми окислительными процессами получения энергии. Важно отметить только, что это основной путь ассимиляции CO2, если последняя служит единственным или главным источником углерода.

Таким образом, обнаруженные у фотосинтезирующих эубактерий типы фотосинтеза различаются организацией фотосинтетического аппарата, природой экзогенных доноров электрона и выделяемыми окисленными продуктами. Общим для всех типов фотосинтеза является способность превращать энергию света в доступные клетке формы энергии, которая потребляется затем во всех энергозависимых процессах, в том числе и для биосинтезов. Использование ее для ассимиляции CO2 — только один из вариантов обеспечения энергией конструктивного метаболизма у фототрофных эубактерий.

ГРУППЫ ФОТОСИНТЕЗИРУЮЩИХ ЭУБАКТЕРИИ

Известно 5 групп эубактерий, способных преобразовывать световую энергию в, химическую с помощью хлорофилла. Фотосинтез, осуществляемый ими, делится на 2 типа: не сопровождающийся выделением молекулярного кислорода (бескислородный фотосинтез) и сопровождающийся выделением O2 (кислородный фотосинтез). В соответствии с этим все фотосинтезирующие эубактерии в IX издании Определителя бактерий Берги предложено разделить на две таксономические группы в ранге классов: Anoxyphotobacteria и Oxyphotobacteria. Эубактерии, осуществляющие бескислородный фотосинтез, на основании таких признаков, как пигментный состав и тонкое строение фотосинтетического аппарата, делятся на 3 группы: пурпурные, зеленые бактерии и гелиобактерии. Эубактерии, фотосинтез которых сопровождается выделением O2, включают 2 группы организмов: цианобактерии и прохлорофиты. В основу деления положены те же признаки (см. табл. 21–23). Критерии, определяющие там, где это возможно, деление на таксоны более низкого ранга, даны при характеристике каждой из выделенных групп.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: