1. Область определения
(–¥; 1) Ç(1; +¥)
2. Так как
и
,
то исследуемая функция не является ни четной ни нечетной.
3. Функция не является периодической.
4. Точка
является точкой разрыва второго рода, так как
+¥, а в остальных точках она непрерывна.
5. Найдем асимптоты графика функции:
а) Так как точка
является точкой разрыва второго рода, то прямая
и есть вертикальная асимптота.
б) Найдем наклонные асимптоты
,

Следовательно,
наклонная (горизонтальная) асимптота.
6. Для нахождения участков монотонности и экстремальных точек найдем первую производную функции:
.
Производная
не существует при
(точка разрыва, см. п. 4) и
при
. Область определения функции разобьем этими точками на интервалы (–¥, 0), (0, 1), (1, +¥) и определим знак
в каждом из них. Результаты представим в виде таблицы
| (–¥, 0) | (0, 1) | (1, +¥) | ||
| – | + | не сущ. | – | |
| | min | | точка разрыва | |
На интервалах (–¥, 0), (1, +¥) функция убывает, на интервале (0, 1) функция возрастает, точка
— точка минимума.
.
7. Для нахождения участков выпуклости и вогнутости найдем вторую производную функции
.
не существует в точке
(точка разрыва, см. п. 4) и равна нулю при
. Область определения функции разобьем этими точками на интервалы (–¥,
), (
, 1), (1, +¥) и определим знак
в каждом из них. Результаты представим в виде таблицы
| (–¥, )
|
| ( , 1)
| (1, +¥) | |
| – | + | не сущ. | + | |
| ◠ | перегиб | ◡ | точка разрыва | ◡ |
На интервале (–¥,
) вторая производная
, следовательно здесь функция выпукла, на интервалах (
, 1), (1, +¥) вторая производная
, следовательно здесь функция вогнута. Так как при переходе через точку
вторая производная меняет знак, то
— точка перегиба.
.
8. Найдем точки пересечения графика функции с осями координат.
,
.
Построение графика начнем с нанесения асимптот, точек пересечения с осями координат, экстремума, перегиба и фрагментов графика функции вблизи этих точек и асимптот.
В окончательном виде график изображен на рисунке. 
ЛИТЕРАТУРА
1. Воднев В. Т. и др. Основные математические формулы: Справочник /
В. Т. Воднев, А. Ф. Наумович, Н. Ф. Наумович; Под ред. Ю. С. Богданова.— 3-е изд., перераб. и доп.— Мн.: Вышэйшая школа, 1995.—380 с: ил.
2. Герасимович А. И. и др. Математический анализ: Справ. пособие.
В 2 ч. Ч.2 /А. И. Герасимович, Н. П. Кеда, М. Б. Сугак.—Мн.: Вышэйшая школа, 1990.— 272 с: ил.
3. Гусак А. А. Высшая математика. Т. 2: [Учеб. пособие для естеств. спец. университетов.— 2-е изд., перераб. и доп.— Мн: Изд-во БГУ, 1983.—462 с.
4. Гусак А.А. Пособие к решению задач по высшей математике. - Мн.: Вышэйшая школа, 1967.
5. Данко П.Е., Попов А.Г., Кожевникова Т.Я. Высшая математика в упражнениях и задачах. - М.; Высшая школа, 1974.
6. Жевняк P.M., Карпук А.А. Высшая математика. Функция многих переменных. Интегральное исчисление. - Мн.: Вышэйшая школа, 1993.
7. Пискунов Н.С. Дифференциальное и интегральное исчисление, т.1-
М.: Наука, 1976.
8. Руководство к решению задач по высшей математике. /Под ред.
Гурского Е.И. Части 1 и 2. - Мн.: Вышэйшая школа, 1989.
9. Сборник задач по общему курсу высшей математики. Под редакцией Яблонского А.И. Мн.: Вышэйшая школа. 1994 г.






