Рассмотрим свойства неопределенного интеграла, вытекающие из его определения.
1. Производная от неопределенного интеграла равна подынтегральной функции, дифференциал от неопределенного интеграла равен подынтегральному выражению:
, 
Доказательство. Пусть
. Тогда
,
.
⊠
2. Неопределенный интеграл от дифференциала некоторой функции равен сумме этой функции и произвольной постоянной:

Доказательство. Действительно, так как
.
Например,
.
⊠
3. Постоянный множитель можно выносить за знак неопределенного интеграла:
.
Доказательство. Действительно, пусть
— первообразная функции
: |
=
. Тогда
— первообразная функции
:
. Отсюда следует, что
.
где
.
⊠
4. Неопределенный интеграл от алгебраической суммы конечного числа функций равен алгебраической сумме интегралов от этих функций.
Доказательство. Доказательство проведем для двух функций. Пусть
и
— первообразные функций
и
:
,
. Тогда функции
являются первообразными функций
. Следовательно,



⊠
5. Если
— первообразная функции
, то
.
Доказательство. Действительно,
.
⊠
6 (инвариантность формул интегрирования). Любая формула интегрирования сохраняет свой вид, если переменную интегрирования заменить любой дифференцируемой функцией этой переменной:

где
— дифференцируемая функция.
В отличие от дифференциального исчисления, где, пользуясь таблицей производных, можно найти производную или дифференциал любой заданной функции, в интегральном исчислении нет общих приемов вычисления неопределенных интегралов, а разработаны лишь частные методы, позволяющие свести данный интеграл к табличному.






