Характеристики одноступенчатого компрессора

Многие компрессоры предназначены для работы при постоянных давлениях всасывания и нагнетания. Но существуют области применения, в которых машины должны быть приспособлены к изменению давлений – закономерного, когда компрессоры предназначаются для работы в нескольких различных режимах с переходом от одних к другим, или же являющегося следствием нарушений в работе аппаратов и трубопроводов (засорения и т. п.) включённых в газовую сеть.

Во всех случаях важно, чтобы машины могли выполнять свои функции при ограничениях в располагаемой мощности, максимальном крутящем моменте, допускаемой нагрузке на поршневой шток и допускаемой конечной температуре. Для расчёта загрузки машины по различным показателям, так же как и в других проточных машинах, служат характеристики.

Выбор системы координат зависит от условий перекачивания газа и целей расчёта. Графики строят по результатам испытания компрессора на газе определённого состава. При отсутствии опытных данных используют теоретические формулы.

Характер кривых зависимостей и N инд.уд от ε показан на примерах (рис. 15.4 и 15.7, а). Теоретическую кривую мощности компрессора при перекачивании идеального газа можно построить по приведенным выше формулам, представленным в следующем виде:

или , (15.18)

где

или ;

; .

При постоянном начальном давлении форма кривой мощности определяется функцией f н (рис. 15.8, а), а когда p к =idem, - функцией f к (рис 15.8, б, в). Линии A – A и B – B на графиках являются геометрическим местом максимумов мощности при различных значениях клиренса1.

Рис. 15.8. Исходные графики для построения теоретических

кривых мощности

Теоретические экстремальные значения ε э при постоянном значении η ад.и определяют по трансцендентным уравнениям, получаемым из условий или . В частном случае.

___________

1 В цилиндрах двустороннего действия допустимо использовать арифметическое среднее клиренсов обеих (штоковой и бесштоковой) камер.

При a = 0 функция f к максимальна при ε э = , тогда как f н максимума не имеет.

Если при расчёте мощности учитывать изменение η ад.и в зависимости от ε, то положение и значение максимума кривой мощности изменяются.

Работа компрессора в режиме максимума мощности A характерна тем, что при любом изменении конечного давления мощность компрессора снижается. Аналогично при работе в режиме B любое изменение p н разгружает машину. Поэтому при частых изменениях давления на входе или на выходе компрессора ограниченной мощности, работающем без постоянного обслуживания, во избежание перегрузки машины желательно, чтобы машина действовала в указанных режимах.

Поскольку с увеличением клиренса значения ε с максимумами функций f н и f к сближаются (см. рис. 15.8, а и б), то при одновременном изменении начального и конечного давлений с этой точки зрения выгодно применять компрессор с большим клиренсом.

На рис. 15.9 даны опытные характеристики (загрузочные кривые) газомотокомпрессора при постоянных значениях конечного давления и постоянной частоте вращения (5,5 об / с). График позволяет для любого значения начального давления выбрать клиренс, необходимый для загрузки компрессора на располагаемую мощность 1,47 МВт. Цифрами обозначены шифры ступенчатой настройки регуляторов с определённым клиренсом. Кривые, отрезки которых составляют пилообразный график мощности, по форме соответствуют рис. 15.8, в.

Диаграмма на рис. 15.10 более удобна в том отношении, что позволяет производить тот же расчёт при любых (в заданном диапазоне) конечном и начальном давлениях. График составлен по данным испытания ВНИИГазом и заводом «Двигатель Революции» газомотокомпрессора МК-8 на газе, содержащим не менее 90 % метана и не более 5 % этана. Семейство параболических кривых по номограмме аналогично графику рис.15.8, а, а правая часть графика служит для умножения на p н величины, полученной в левой части, и для корректировки номинальной мощности N ном (при 300 об / мин) по фактической частоте вращения вала. Пунктиром показан пример использования графика для определения мощности, снимаемой с вала машины, и объёмного расхода газа на входе компрессора. Шифр «2РПЗ» означает, что закрыты две из восьми подключаемых полостей мёртвого пространства.

Рис. 15.10. Комбинированный график для определения

объёмного расхода газа на входе и мощности

газомотокомпрессора МК – 8

Н а д и а г р а м м е в к о о р д и н а т а х p н, p к линии равных ε представлены лучами, исходящими из начала координат. На биссектрисе прямого угла расположены точки, соответствующие режимам сжатия при ε = 1, а на оси ординат – режиму с бесконечно большим ε. Достоинство диаграммы в том, что варианты сочетаний p н и p к, диктуемые технологическим процессом, можно сравнить на диаграмме с предельными характеристиками компрессора.

Кривая изомощности для одной частоты вращения вала при постоянном клиренсе (рис. 15.11, а) разделяет области режимов перегрузки и режимов неполного использования номинальной мощности. Точками A и B отмечены те же режимы, что и на рис. 15.8. При построении теоретических кривых изомощности с постоянным адиабатическим КПД в отсутствии утечек газа все точки A (или B) находятся на одном луче (на рис. 15.11, а – соответственно на лучах ε = 5,75 и ε = 2,40); в действительности линии A – A и B – B в координатах p н, p к не прямые.

Влияние клиренса на положение кривой изомощности (в данном примере 295 кВт) показано на рис. 15.11, б. Наглядно видно, что увеличению клиренса отвечает более высокий уровень давлений на входе и выходе и что при этом точки A и B сближаются.

Рис. 18.11. Графики мощности и объёмного расхода газа на входе

поршневого компрессора:

а – линии изомощностей при постоянном клиренсе; б – линии изомощности

при переменном клиренсе; в – линии равной объёмной подачи ;

г – комбинированный график с предельными показателями для

газомотокомпрессора МК – 8 (пунктиром проведены линии подачи

= 100 тыс. м3 / ч)

С увеличением частоты вращения вала кривые изомощности смещаются к началу координат, т. е. при заданной мощности любого компрессора большим значениям соответствуют пониженные уровни давлений и, наоборот, с повышением давлений (при равных ε) объёмный расход газа на входе снижается. На диаграмме p н, p к, кроме линий мощности, в качестве предельных характеристик можно нанести также линии объёмной подачи, допускаемой нагрузки на поршневой шток и температурного предела.

Если в формулу объёмной подачи в отсутствии утечек

в левую часть подставить потребную подачу, то для заданного клиренса изолинии подачи в тех же координатах представляются почти прямыми (рис. 15.11, в). Для больших подач аналогичные характеристики изображаются линиями, параллельными представленной на графике и смещёнными в сторону увеличения p н.

Усилие в поршневом штоке

,

где F, f – площади поршня и штока. При заданном R это выражение также представляется прямой.

Конечная температура , откуда , т. е. линия постоянной конечной температуры – прямая.

Если нанести полученные линии на общий график, то можно определить зону возможных режимов сжатия для данной машины при выбранных значениях частоты вращения вала и клиренса.

На рис. 15.11, г показан комбинированный график с указанными линиями характеристик, построенными по данным рис.15.10. Пунктиром нанесены линии объёмной подачи = 100 тыс. м3 / ч для трёх значений клиренса.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: