Высокоинтенсивные технологии

. Биологический потенциал сорта реализуется не менее, чем на 80–85 %. Качество продукции высокое. Используется комплекс всех агротехнических, биологических и химических мер по защите растений. Растения полностью обеспечиваются всеми необходимыми элементами питания для достижения планируемой урожайности за счет удобрений. Применение удобрений экономически рентабельно и экологически безопасно. Технологии такого уровня рассчитаны на использование всех достижений научно-технического прогресса.[5]

18.ПОНЯТИЕ О СОРТЕ, ЗНАЧЕНИЕ СОРТА В ПОВЫШЕНИИПРОДУКТИВНОСТИ РАСТЕНИЙ. ГЕТЕРОЗИСНЫЕ ГИБРИДЫ, ИХ ЗНАЧЕНИЕ И РАСПРОСТРАНЕНИЕ.

Под сортом понимается совокупность сходных по хозяйственно-био­логическим свойствам и морфологическим признакам культурных расте­ний, созданных и размноженных для возделывания в соответствующих природных и производственных условиях с целью повышения урожайности, качества продукции и экономической эффективности производства.

Создаваемые человеком сорта предназначаются для получения высоких стабильных урожаев определенного вида продукции нужного качест­ва. Растения, составляющие сорт, характеризуются общностью происхож­дения, имеют схожую генетическую основу и размножены из одного или

из нескольких исходных индивидуумов. Степень сходства растений, сос­тавляющих сорт, определяется как исходным селекционным материалом (гибриды, мутанты, гибридо-мутанты, полиплоиды и др.), так и методами используемого отбора (индивидуальный, массовый, клоновый и др.). Сорт создается для определенных почвенно-климатических зон, где для него имеется возможность наиболее полной реализации потенциальной возможности генотипа.

Сорта сельскохозяйственных культур по своему происхождению под­разделяются на местные (созданные в результате действия естественно­го и искусственного отборов в определенной местности) и селекционные (созданные на основе научных методов селекции).

В зависимости от способов выведения получают сорта-популяции, создаваемые путем массового отбора перекрестноопыляющихся (рожь, гречиха, кукуруза, свекла, клевер и др.) или самоопыляющихся расте­ний; сорта-линии, получаемые путем индивидуального отбора растений самоопыляющихся культур (пшеница, ячмень, овес, горох, лен, люпин узколистный и др.), представляющие потомство, размноженное от одного растения. Сорта гибридного происхождения создаются путем скрещивания родительских форм с последующим отбором ценных растений для дальней­шего их размножения. Сорта-клоны, получаемые методом индивидуального отбора у вегетативно размножаемых культур (картофель, топинамбур, лук, чеснок, земляника).

Гибриды в зависимости от способа получения подразделяются на простые, двойные, трехлинейные, межлинейные, сорто-линейные, линей­но-сортовые. Для получения гибридов используют стерильные аналоги, фертильные аналоги закрепители стерильности и фертильные аналоги восстановители фертильности.

Сорта и гибриды могут быть перспективными, районированными, де­фицитными и стандартными. Перспективными признаются сорта и гибриды, которые успешно проходят государственное испытание, подтверждают свои преимущества, но требуют перед районированием прохождения про­изводственного испытания и размножения в системе первичного семено­водства. Районированные сорта и гибриды заносятся в Государственный реестр охраняемых сортов и разрешаются для использования в произ­водстве. Дефицитными являются районированные сорта и гибриды, по ко­торым не полностью развернуто семеноводство и ощущается недостаток семян.

Стандартом являются лучшие районированные сорта и гибриды, по которым в государственном испытании осуществляется сравнение всех испытываемых новых сортов на госсортоучастках (ГСУ) и государствен­ных сортоиспытательных станциях (ГСС).

Огромное значение в повышении продуктивности сельскохозяйственных растений играет создание новых сортов с повышенной эффективностью фотосинтеза, устойчивых к болезням и вредителям, засухе и морозам, способных расти на засоленных и бедных почвах и т.д. В последнее десятилетие для выведения новых сортов растений все чаще и чаще применяют методы генетической и клеточной инженерии. Например, в клетки картофеля введены гены, которые делают растения ядовитыми для личинок колорадского жука, поэтому картофельные поля уже не нужно обрабатывать ядохимикатами. Это приводит не только к существенному уменьшению затрат, но и предохраняет от загрязнения окружающую среду. Уже созданы устойчивые к заболеваниям сорта картофеля, декоративных и ягодных культур, древесные породы и культурные растения, не чувствительные к гербицидам – веществам, используемым для борьбы с сорняками.
Ученые предпринимают попытки вывести новые растения, к примеру злаки, которые будут способны фиксировать атмосферный азот. В начале ХХI века в США, Китае и ряде других стран новые сорта растений, созданных генноинженерным путем и содержащим гены из других организмов (так называемые трансгенные растения), занимают уже миллионы гектаров сельскохозяйственных угодий.

Гетерозис (от греч. heteroiosis — изменение, превращение), «гибридная сила», ускорение роста и увеличение размеров, повышение жизнестойкости и плодовитости гибридов первого поколения при различных скрещиваниях как животных, так и растений. Во втором и последующих поколениях Г. обычно затухает. Различают истинный Г. — способность гибридов оставлять большое число плодовитых потомков, и гигантизм — увеличение всего гибридного организма или отдельных его частей. Г. обнаружен у разнообразных многоклеточных животных и растений (в т. ч. и самоопылителей). Сходные с Г. явления наблюдаются при половом процессе и у некоторых одноклеточных. У с.-х. животных и возделываемых растений Г. нередко приводит к значительному повышению продуктивности и урожайности (см. ниже — Гетерозис в сельском хозяйстве).

Г. и обратная ему инбредная депрессия (см. Инбридинг) были известны уже древним грекам, в частности Аристотелю. Первые научные исследования Г. у растений проведены немецким ботаником И. Кёльрёйтером (1760). Ч. Дарвин обобщил наблюдения о пользе скрещиваний (1876), оказав тем самым большое влияние на работы И. В. Мичурина и многих др. селекционеров. Термин «Г.» предложил американский генетик Г. Шелл (1914); он первый получил «двойные» межлинейные гибриды кукурузы. Основы метода промышленного выращивания этих гибридов разработал Д. Джонс (1917). Применение гибридизации в сельском хозяйстве расширяется из года в год, что стимулирует и теоретические исследования Г. Особи с сильно выраженным Г. имеют преимущества при естественном отборе, и потому проявления Г. усиливаются, что способствует увеличению генетической изменчивости. Нередко возникают устойчивые генетические системы, обеспечивающие преимущественное выживание гетерозигот по многим генам.

Исследование Г., помимо обычного изучения морфологических признаков, требует применения физиологических и биохимических методик, позволяющих обнаружить тонкие различия между гибридами и исходными формами. Начато изучение Г. и на молекулярном уровне: в частности, у многих гибридов исследуется строение специфических белковых молекул — ферментов, антигенов и др.

По Дарвину, Г. обусловлен объединением в оплодотворённой яйцеклетке разнородных наследственных задатков. На этой основе возникли две главные гипотезы о механизме Г. Гипотеза гетерозиготности («сверхдоминирования», «одногенного» Г.) была выдвинута американскими исследователями Э. Истом и Г. Шеллом (1908). Два состояния (два аллеля) одного и того же гена при их совмещении в гетерозиготе дополняют друг друга в своём действии на организм. Каждый ген управляет синтезом определенного полипептида. У гетерозиготы синтезируются несколько различных белковых цепочек вместо одной и нередко образуются гетерополимеры — «гибридные» молекулы (см. Комплементарность); это может дать ей преимущество. Гипотезу доминантности (суммирования доминантных генов) сформулировали американские биологи А. В. Брюс (1910), Д. Джонс (1917) и др. Мутации (изменения) генов в общей массе вредны. Защитой от них служит увеличение доминантности «нормальных» для популяции генов (эволюция доминантности). Совмещение у гибрида благоприятных доминантных генов двух родителей приводит к Г. Обе гипотезы Г. могут быть объединены концепцией генетического баланса (американский учёный Дж. Лернер, английский К. Матер, русский генетик Н. В. Турбин). В основе Г., по-видимому, лежит взаимодействие как аллельных, так и неаллельных генов; однако во всех случаях Г. связан с повышенной гетерозиготностью гибрида и его биохимическим обогащением, что и обусловливает усиление обмена веществ. Особый практический и теоретический интерес представляет проблема закрепления Г. Она может быть решена путём удвоения хромосомных наборов (см. Полиплоидия), создания устойчивых гетерозиготных структур и использования всех форм апомиксиса, а также вегетативного размножения гибридов. Эффект Г. может быть закреплен и при удвоении отдельных генов или небольших участков хромосом. Роль таких дупликаций в эволюции очень велика; поэтому Г. следует рассматривать как важный этап на пути эволюционного прогресса.

В. С. Кирпичиков.

Гетерозис в сельском хозяйстве. Использование Г. в растениеводстве — важный приём повышения продуктивности растений. Урожай гетерозисных гибридов на 10—30% выше, чем у обычных сортов. Для использования Г. в производстве разработаны экономически рентабельные способы получения гибридных семян кукурузы, томатов, баклажанов, перца, лука, огурцов, арбузов, тыквы, сахарной свёклы, сорго, ржи, люцерны и др. с.-х. растений. Особое положение занимает группа вегетативно размножаемых растений, у которых возможно закрепление Г. в потомстве, например сорта картофеля и плодово-ягодных культур, выведенные из гибридных семян. Для использования Г. с практической целью применяются межсортовые скрещивания гомозиготных сортов самоопыляющихся растений, межсортовые (межпопуляционные) скрещивания самоопылённых линий перекрёстноопыляющихся растений (парные, трёхлинейные, двойные — четырёхлинейные, множественные) и сортолинейные скрещивания. Преимущество определённых типов скрещивания для каждой с.-х. культуры устанавливается на основе экономической оценки. Устранению трудностей В получении гибридных семян может способствовать использование цитоплазматической мужской стерильности (ЦМС), свойства несовместимости у некоторых перекрестноопыляющихся растений и других наследственных особенностей в структуре цветка и соцветия, исключающих большие затраты на кастрацию. При выборе родительских форм для получения гетерозисных гибридов оценивают их комбинационную способность. Первоначально селекция в этом направлении сводилась к выделению лучших по комбинационной ценности генотипов из популяций свободноопыляющихся сортов на основе инбридинга в форме принудительного самоопыления. Разработаны методы оценки и повышения комбинационной способности линий и др. групп растений, используемых для скрещиваний.

Наибольший эффект в использовании Г. достигнут на кукурузе. Создание и внедрение в производство гибридов кукурузы позволило повысить на 20—30% валовые сборы зерна на огромных площадях, занимаемых этой культурой в разных странах мира. Созданы гибриды кукурузы, совмещающие в себе высокую урожайность с хорошим качеством семян, засухоустойчивостью и иммунитетом к различным болезням. Районированы гетерозисные гибриды сорго (Гибрид Ранний 1, Гибрид Восход), гетерозисные межсортовые гибриды сахарной свёклы, из которых наибольшее распространение получил Ялтушковский гибрид. Для получения гетерозисных форм все шире используются линии сахарной свеклы со стерильной пыльцой. Явления Г. установлены также у многих овощных и масличных культур. Получены первые результаты в изучении Г. у гибридов пшеницы первого поколения, созданы стерильные аналоги и восстановители фертильности (плодовитости), выявлены источники ЦМС у пшеницы.

В животноводстве явления Г. наблюдаются при гибридизации, межпородном и внутрипородном (межлинейном) скрещивании и обеспечивают заметное повышение продуктивности с.-х. животных. Наибольшее распространение получило использование Г. при промышленном скрещивании. В птицеводстве при скрещивании яйценоских пород кур, например леггорнов с австралорпами, родайландами и др., яйценоскость помесей первого поколения возрастает на 20—25 яиц в год; скрещивание мясных пород кур с мясо-яичными обусловливает повышение мясных качеств (см. Бройлер); Г. по комплексу признаков получают при скрещивании близкородственных линий кур одной породы или при межпородных скрещиваниях. В свиноводстве, овцеводстве и скотоводстве промышленным скрещиванием пользуются для получения Г. по мясной продуктивности, что выражается в повышении скороспелости и живого веса животных, увеличении убойного выхода, улучшении качества туши. Свиней мясо-сальных (комбинированных) пород скрещивают с хряками мясных пород. Мелких малопродуктивных овец местных пород скрещивают с баранами мясо-шёрстных пород, тонкорунных маток — с баранами скороспелых мясных или полутонкорунных пород. Для повышения мясной продуктивности коров молочных, молочно-мясных и местных мясных пород скрещивают с быками специализированных мясных пород.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: