ИДЗ №1 ПО ДИСКРЕТНОЙ МАТЕМАТИКЕ
ЭЛЕМЕНТЫ ТЕОРИИ МНОЖЕСТВ
ВАРИАНТ 4
Задача 1. Докажите, что при любом натуральном
имеет место равенство
.
Задача 2. Докажите, что при любом натуральном
делится на 17.
Задача 3. Позывные американских радиостанций состоят из трех или четырех букв и начинаются с
или
. Сколько может существовать различных позывных (в английском языке 26 букв)?
Задача 4. Найдите коэффициент при
в разложении
.
Задача 5. Даны числовые множества
и
. Найдите
,
,
,
,
,
и
. Изобразите
.
а)
,
б)
, где
— множество цифр
.
Задача 6. 70 первокурсников потока АВ – 08 в качестве домашнего задания придумывали задачу на пересечение трех множеств. К помощи Интернета прибегли 25 человек, к помощи сокурсника 30 человек, самостоятельно сочиняли 47 человек. Один студент часть задачи взял с Интернета, часть списал у сокурсника, часть додумал сам, 13 человек часть взяли с Интернета, а часть додумали сами, 8 человек часть взяли с Интернета, а часть списали у сокурсника, 15 человек часть списали у сокурсника, а часть придумали сами. Сколько человек были полностью самостоятельными? Сколько человек не сделали домашнего задания?
|
|
|
Задача 7. Проверьте, является ли заданное отношение рефлексивным, антирефлексивным, симметричным, антисимметричным, транзитивным, эквивалентным, отношением порядка.
Отношение
на множестве
. Запишите матрицу отношения
и постройте граф.
Задача 8. На множестве действительных чисел задана операция
по формуле
. Проверьте, является ли она коммутативной, ассоциативной.
Задача 9. Установите взаимно однозначное соответствие между числовыми промежутками
и
аналитически, если
.






