ИДЗ №1 ПО ДИСКРЕТНОЙ МАТЕМАТИКЕ
ЭЛЕМЕНТЫ ТЕОРИИ МНОЖЕСТВ
ВАРИАНТ 10
Задача 1. Докажите, что при любом натуральном
имеет место равенство
.
Задача 2. Докажите, что при любом натуральном
делится на 16.
Задача 3. Сколькими способами можно распределить 4 разные конфеты между четырьмя девочками, если а) каждая должна получить по конфете, б) разрешаются любые способы распределения?
Задача 4. Найдите коэффициент при
в разложении
.
Задача 5. Даны числовые множества
и
. Найдите
,
,
,
,
,
и
. Изобразите
.
а)
,
б)
, где
— множество цифр
.
Задача 6. Три подруги Маша, Даша и Саша решили устроить праздник для своих однокурсников, и каждая составила свой список приглашенных. Оказалось, что у Маши и Саши в списках есть 5 общих друзей, у Даши и у Маши — трое, у Даши и у Саши — только двое, причем один из них есть и в Машином списке. Список Маши был самый длинный — 15 человек, в списке Даши — 7 человек, а у Саши — 10. Сколько гостей оказалось в общем списке? Сколько гостей есть в Машином списке, но нет в Дашином и Сашином?
Задача 7. Проверьте, является ли заданное отношение рефлексивным, антирефлексивным, симметричным, антисимметричным, транзитивным, эквивалентным, отношением порядка.
Отношение
на множестве
. Запишите матрицу отношения
и постройте граф.
Задача 8. На множестве действительных чисел задана операция
по формуле
. Проверьте, является ли она коммутативной, ассоциативной.
Задача 9. Установите взаимно однозначное соответствие между числовыми промежутками
и
аналитически, если
.






