double arrow

Ферменты. Особенности ферментативного катализа. Строение и структура ферментов.

Краткая история энзимологии.

Присуждением Нобелевской премии Дж Самнеру, Дж. Нортропу и Стенли в 1946 г была подведена черта длительному периоду развития энзимологии – науки о ферментах. Начало этой науки восходит к заре истории развития человечества, использующего ряд технологических ферментативных процессов в своей жизни: хлебопечение, виноделие, обработка шкур животных и т.д. Потребность совершенствования этих процессов стало побудительным началом для их углубленного исследования. К первым научным описаниям ферментативных процессов относится описание пищеварения у животных Рене Антуан реомюр (1683—1757) при постановке своих экспериментов исходил из сделанного Фолкнером предположения о том, что хищные птицы отрыгивают не переваренные остатки пищи. Реомюр сконструировал маленькую проволочную капсулу, в которую был положен кусок мяса и дал ее склевать сарычу. Через 24 часа птица выплюнула эту капсулу. В ней остался размягченный кусок пиши, который однако не портился. «Этот процесс может быть только результатом действия какого-то растворителя»,— заключил Реомюр. Лаззаро Спалланцани (1729-1799), профессор истории естествознания в Университете города Падуя, сообщал о подобных же экспериментах. Однако он не рассматривал пищеварение как процесс ферментации по той простой причине, что при этом не образовывались пузырьки газа.

Позже процесс ферментации был более подробно изучен одним из основоположников современной химии Антуаном Лораном Лавуазье (1743-1794). Изучая спиртовое брожение, происходящее при изготовлении вина, он обнаружил, что глюкоза превращается в спирт и углекислый газ,

К началу XIX в. преобладала общая точка зрения, что ферментация - это химические изменения, вызываемые некоторыми специальными формами органического материала, а именно «ферментами». В 1814 г. русский ученый (немец по происхождению) академик Петербургской Академии наук Константин Готлиб Сигизмунд Кирхгоф (1764-1833) показал, что образование сахара из крахмала в проросших зернах злаков обусловлено химическим процессом, а не появлением ростков. В 1810 г Ю. Гей-Люссак выделил основные конечные продукты жизнедеятельности дрожжей – спирт и углекислый газ. Я. Берцелиус, один из основоположников теории химического катализа и автор самого термина «катализ» в 1835 году подтверждает эти данные, отметив, что диастаза (экстракт из солода) катализирует гидролиз крахмала более эффективно, чем минеральная серная кислота. Важную роль в развитии энзимологии сыграл спор Ю Либиха с известным микробиологом Л. Пастером, который считал, что процессы ферментации могут происходить только в целой живой клетке. Ю. Либих, напротив, считал, что биологические процессы вызываются действием химических веществ, которые в последствии были названы ферментами. Термин энзим (греч. еn – в, zyme - дрожжи) предложил 1878 г Фридрих Вильгельм Кюне чтобы подчеркнуть, что процесс идет в дрожжах в противоположность самим дрожжам, которые катализируют процесс ферментации. Однако в 1897 году Э. Бюхнер получил свободный от клеток экстракт из дрожжей, способный получать этанол и утвердил мнение Либиха.

Попытки объяснить одно из важных свойств ферментов специфичность привело в 1894 году немецкого химика и биохимика Э. Фишера к предложению модели взаимодействия фермента и субстрата, названной «ключ-замок» – геометрической комплементарности форм субстрата (ключ) и фермента(замок). В 1926 году Дж. Самнер после почти 9-летених исследований доказал белковую природу фермента уреазы. В те же годы Дж Нортроп и М Кунитц указали на прямую корреляцию между активностью кристаллических пепсина, трипсина и количеством белка в исследуемых образцах, приведя тем самым весомые доказательства белковой природы ферментов, хотя окончательные доказательства были получены после определение первичной структуры и искусственного синтеза ряда ферментов. Основные представления о ферментах получены уже во второй половине ХХ столетия. В 1963 году исследована аминокислотная последовательность РНКазы из поджелудочной железы. В 1965 г показана пространственная структура лизоцима. За последующие годы очищены тысячи ферментов и получено много новых данных о механизмах действия ферментов, их пространственной структуре, регуляции реакций, катализируемых ферментами. Обнаружена каталитическая активность у РНК (рибозимы). Получены антитела с ферментативной активностью –абзимы. Эта глава кратко знакомит с современными представлениями о строении, механизме действия и медицинских аспектах энзимологии.

Особенности ферментативного катализа.

1. Белковая природа катализатора

2. Исключительно высокая эффективность. Эффективность биологического катализа превышает эффективность неорганического в 109 - 1012

3. Исключительно высокая специфичность:

а) абсолютная, когда фермент работает только со своим субстратом (фумараза с транс-изомерами фумаровой кислоты и не будет с цис-изомерами);

б) групповая - специфичен для узкой группы родственнных субстратов (ферменты ЖКТ).

4. Работает в мягких условиях (t=37, рН 7.0, определенные осмолярность и солевой состав).

5. Многоуровневая регуляция: регуляция активности на уровне условий среды, на уровне метаболона, на генетическом уровне, тканевом, клеточном, с помощью гормонов и медиаторов, а также с помощью субстратов и продуктов той реакции, которую они катализируют.

6. Кооперативность: ферменты способны организовывать ассоциации - продукт 1-го фермента, является субстратом для 2-го; продукт 2-го - субстратом для 3-го и т.д.

Кроме того, ферменты обладают адаптивностью, т. е. могут изменять свою активность и образовывать новые ассоциации.

7. Способны катализировать как прямую так и обратную реакцию. Направление реакции для многих ферментов определяется соотношением действующих масс.

8. Катализ жестко расписан, т. е. происходит поэтапно.

Специфичность действия ферментов.

Высокая специфичность ферментов обусловлена, конформационной и электростатической комплементарностью между молекулами субстрата и фермента и уникальной структурой активного центра фермента, обеспечивающими «узнавание», высокое сродство и избирательность протекания одной какой-либо реакции.

В зависимости от механизма действия различают ферменты с относительной или групповой специфичностью и с абсолютной специфичностью.

Для действия некоторых гидролитических ферментов наибольшее значение имеет тип химической связи в молекуле субстрата. Так например, пепсин, расщепляет белки животного и растительного происхождения, хотя они могут отличаться по химическому строению, а/к составу, физиологическим свойствам. Однако пепсин не расщепляет углеводы и жиры. Это объясняется тем, что местом действия пепсина является пептидная связь. Для действия липазы таким местом является сложно-эфирная связь жиров.

Т. е. эти ферменты обладают относительной специфичностью.

Абсолютной специфичностью действия называют, способность фермента катализировать превращение только единственного субстрата и любые изменения в структуре субстрата делают его недоступным для действия фермента. Например: аргиназа, расщепляющая аргинин; уреаза, катализирующая распад мочевины.

Имеются доказательства существования стереохимической специфичности, обусловленной существованием оптически изомерных L- и D- форм или геометрических (цис- и транс-) изомеров

Так известны оксидазы L и D а/к.

Если какое-либо соединение существует в форме цис- и трансизомеров, то для каждой из этих форм, существует свой фермент. Например, фумараза катализирует превращение только фумаровой кислоты (транс-), но не действует на цис-изомер - малеиновую кислоту.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



Сейчас читают про: