Обозначим медианы треугольника АВС через ВЕ, СF и обозначим векторы, идущие вдоль сторон треугольника АВС, через а, в, с:
ВС = а, СА = в, АВ = с
(рис.8). Тогда
АD = АВ + ВD = АВ +
= с + 
аналогично определяются и другие медианы:
ВЕ = а +
, СF = в + 
Так как, в силу условия замкнутости
ВС + СА + АВ = а + в + с = 0,
то мы имеем:
АD + ВЕ + СF = (с +
) + (а +
) + (в +
) =
(а + в + с) =
х 0 = 0.
Следовательно, отложив от точки В, вектор В1С1 = ВЕ и от точки С1 – вектор С1D1 = СF, мы получим.
А1В1 + В1С1 + С1D1 = АD + ВЕ + СF = 0.
А это значит (в силу условия замкнутости), что ломаная А1В1С1D1 является замкнутой, т.е. точка D1 совпадает с А1.
Таким образом, мы получаем треугольник А1В1С1 (рис.9), стороны которого равны и параллельны медианам АD, ВЕ, СF исходного треугольника.






