Краткая теория. В данном практикуме, равно как и в базовом пособии, рассматриваются лишь модели классической экологии (взаимодействие популяций)

В данном практикуме, равно как и в базовом пособии, рассматриваются лишь модели классической экологии (взаимодействие популяций).

Популяция ¾ совокупность особей одного вида, существующих в одно и то же время и занимающих определенную территорию.

Взаимодействие особей внутри популяции определяется внутривидовой конкуренцией, взаимодействие между популяциями ¾ межвидовой конкуренцией.

Внутривидовая конкуренция в популяции с дискретным размножением. Для популяций с дискретным размножением (некоторые виды растений, насекомых и т.д.) поколения четко разнесены во времени и особи разных поколений не сосуществуют. Численность такой популяции можно характеризовать числом N t и считать t величиной дискретной ¾ номером популяции.

Одна из моделей межвидовой конкуренции в этом случае выражается уравнением

(3.1)

Здесь R ¾ скорость воспроизводства популяции в отсутствии внутривидовой конкуренции (математически это соответствует случаю a = 0). Тогда уравнение определяет просто изменение численности популяции по закону геометрической прогрессии: , где N 0 ¾ начальная численность популяции.

Знаменатель в уравнении отражает наличие конкуренции, делающей скорость роста тем меньше, чем больше численность популяции; a и b ¾ параметры модели.

Исходные параметры модели:

· R ¾ скорость воспроизводства;

· N 0 ¾ начальная численность популяции;

· a ¾ параметр, характеризующий интенсивность внутривидовой конкуренции.

Характерная черта эволюции при b =1 ¾ выход численности популяции на стационарное значение при любых значениях других параметров. Однако, в природе так бывает не всегда, и более общая модель при 1 отражает другие, более сложные, но реально существующие, виды эволюции. Этих видов модель описывает четыре:

1) монотонное установление стационарной численности популяции;

2) колебательное установление стационарной численности популяции;

3) устойчивые предельные циклы изменения численности популяции;

4) случайные изменения численности популяции без наличия явных закономерностей (динамический хаос).

Внутривидовая конкуренция в популяции с непрерывным размножением. Математическая модель в данном случае строится на основе дифференциальных уравнений. Наиболее известна так называемая логистическая модель:

(3.2)

Исходные параметры модели:

· r ¾ скорость роста численности популяции в отсутствие конкуренции;

· K ¾ предельное значение численности популяции, при котором скорость роста становится равной нулю;

· N 0 ¾ начальная численность популяции.

Межвидовая конкуренция. В этом случае исследуется конкуренция популяций, потребляющих общий ресурс. Пусть N 1 и N 2 ¾ численности конкурирующих популяций. Модель (называемая также моделью Лотки-Вольтерры) выражается уравнениями

(3.3)

Содержательный смысл параметров можно понять из сравнения с предыдущей моделью. Дополнительные параметры a 12и a 21 отражают интенсивность межвидовой конкуренции.

Главный вопрос, который интересует исследователя межвидовой конкуренции ¾ при каких условиях увеличивается или уменьшается численность каждого вида? Данная модель предсказывает следующие режимы эволюции взаимодействующих популяций: устойчивое сосуществование или полное вытеснение одной из них.

Система «хищник-жертва». В этой системе ситуация значительно отличается от предыдущей. В частности, если в случае конкурирующих популяций исчезновение одной означает выигрыш для другой (дополнительные ресурсы), то исчезновение «жертвы» влечет за собой и исчезновение «хищника», для которого в простейшей модели «жертва» является единственным кормом.

Обозначим через С численность популяции хищника и через N ¾ популяции жертвы. Одна из известных моделей выражается следующими уравнениями:

(3.4)

В первое уравнение заложен следующий смысл. В отсутствии хищников (т.е. при С =0) численность жертв растет экспоненциально со скоростью r, т.к. модель не учитывает внутривидовой конкуренции. Скорость роста числа жертв (т.е. ) уменьшается тем больше, чем чаще происходят встречи представителей видов; а ¾ коэффициент эффективности поиска.

Второе уравнение говорит о следующем. В отсутствии жертв численность хищников экспоненциально убывает со скоростью q; положительное слагаемое в правой части уравнения компенсирует эту убыль; f ¾ коэффициент эффективности перехода пищи в потомство хищников.

Контрольные вопросы

1. В чем состоит предмет исследований классической экологии?

2. В чем сущность процессов:

· внутривидовой конкуренции?

· межвидовой конкуренции?

· отношений «хищник-жертва»?

3. Каковы цели математического моделирования в экологии?

4. В чем отличие приемов моделирования популяций с непрерывным и дискретным размножением?

5. Задачи классической экологии и математическое моделирование.

6. Математическое моделирование процессов распространения загрязнений окружающей среды.

7. Динамика развития популяций. Математические модели внутривидовой и межвидовой конкуренции и системы «хищник-жертва».

Рекомендации.

1. При проведении расчетов необходим контроль точности результатов и устойчивости применяемого численного метода. Для этого достаточно ограничиться эмпирическими приемами (например, сопоставлением решений, полученных с несколькими разными шагами по времени).

2. Целесообразно применять для моделирования стандартные методы интегрирования систем дифференциальных уравнений, описанные в математической литературе. Простейшие методы (метод Эйлера) часто бывают неустойчивы и их применение ведет к лишнему расходу времени.

3. Результаты моделирования следует выводить на экран компьютера в следующих видах: таблицы зависимостей численности популяций от времени, графики этих зависимостей. Уместны звуковые сигналы (одни — в критические моменты для моделируемого процесса, другие — через некоторый фиксированный отрезок пройденного пути и т.д.).

4. При выводе результатов в табличном виде следует учитывать, что соответствующий шаг по времени не имеет практически ничего общего с шагом интегрирования и определяется удобством и достаточной полнотой для восприятия результатов на экране. Экран, сплошь забитый числами, не поддается восприятию. Выводимые числа следует разумным образом форматировать, чтобы незначащие цифры практически отсутствовали.

5. При выводе результатов в графической форме графики должны быть построены так, как это принято в математической литературе (с указанием того, какие величины отложены по осям, масштабами и т.д.).

6. Поскольку таблицы и графики на одном экране обычно не помещаются, удобно сделать меню, в котором пользователь выбирает желаемый в настоящий момент вид представления результатов.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: