Плоскопараллельным (или просто плоским) называется такое движение твердого тела, при котором все его точки перемещаются в плоскостях, параллельных какой-то неподвижной плоскости.
Плоское движение совершают многие звенья механизмов и машин. Катящееся колесо.

Частным случаем такого движения является вращение тела вокруг неподвижной оси. Все звенья кривошипно-ползунного механизма, состоящего из кривошипа ОА, ползуна В и шарнирно соединенного с ним шатуна АВ, совершают плоское движение, так как все звенья движутся параллельно некоторой неподвижной плоскости (плоскости чертеже). Одновременно движение кривошипа ОА является вращательным, движение ползуна В – поступательным. Все точки колеса движутся в плоскостях, параллельных неподвижной вертикальной плоскости. При движении по закруглению движения колеса не будет плоским.

Плоскопараллельное движение твердого тела является составным, оно складывается из поступательного движения вместе с какой-либо точкой, принятой за полюс, и вращения вокруг оси, проходящей через эту точку. Поэтому плоское движение твердого тела описывается тремя уравнениями:

За полюс принимают точку, скорость которой известна или ее легко можно вычислить. Например, движение колеса складывается из поступательного движения вместе с полюсом-центром колеса О и вращения с угловой скоростью
вокруг оси, проходящей через полюс. Скорость любой точки В тела, совершающего плоское движение, равна геометрической сумме скорости полюса и скорости точки в ее вращении вместе с телом вокруг оси, проходящей через полюс:
где
- угловая скорость звена.

Вектор скорости
во вращательном движении направлен перпендикулярно к отрезку АВ.
Скорость точки В колеса складывается из скорости А и скорости
во вращении точки В вместе с колесом относительно оси А.

Доказательство существования мгновенного центра скоростей. Пользуясь теоремой о скоростях точек плоской фигуры, покажем, что в каждый момент времени существует точка, неизменно связанной с плоской фигурой, скорость которой в этот момент равен нулю. Эту точку называют мгновенным центром скоростей (МЦС).

Допустим, что известны скорость некоторой точки О плоской фигуры
и угловая скорость фигуры
в некоторый момент времени. Примем точку О за полюс. Тогда скорость любой точки фигуры будет равна геометрической сумме скорости полюса
и вращательной скорости точки вокруг этого полюса. Восставим в точке О перпендикуляр к направлению скорости
так, чтобы направление поворота скорости
к этому перпендикуляру совпадало с направлением вращения фигуры.
Вращательные скорости всех точек этого перпендикуляра вокруг полюса О направлены противоположно скорости полюса.
Найдем такую точку Р, вращательная скорость которой равна по модулю скорости полюса
, т.е.
.
Так как направления этих скоростей противоположны, то
.
Скорость точки Р
.
Следовательно, точка Р в рассматриваемый момент времени является мгновенным центром скоростей.
Определим положение точки Р. вычислим вращательную скорость точки Р вокруг полюса О и приравняем ее скорости полюса:
.
Следовательно, мгновенный центр скоростей плоской фигуры находится на перпендикуляре к направлению скорости полюса на расстоянии от полюса, равном
.






