Один из наиболее простых методов решения транспортной задачи – распределительный метод.
Пусть для транспортной задачи найдено начальное опорное решение
и вычислено значение целевой функции на этом решении Z(
). По теореме6 для каждой свободной клетки таблицы задачи можно построить единственный цикл, который содержит эту клетку и часть клеток, занятых опорным решением. Означив этот цикл и осуществив сдвиг (перераспределение груза) по циклу на величину
=
, можно получить новое опорное решение Х2.
Определим, как изменится целевая функция при переходе к новому опорному решению. При сдвиге на единицу груза по циклу, соответствующему клетке (l, k), приращение целевой функции
равно разности двух сумм:
=
, где
- сумма стоимостей перевозок единиц груза в нечетных клетках цикла, отмеченных знаком «+»,
- сумма стоимостей перевозок единиц груза в четных клетках цикла, отмеченных знаком «-».
В клетках, отмеченных знаком «+», величины груза прибавляются, что приводит к увеличению значения целевой функции Z(
), а в клетках, отмеченных знаком «-», величины груза уменьшаются, что приводит к уменьшению значения целевой функции.
Если разность сумм для свободной клетки (l, k) меньше нуля, т.е.
<0, то перераспределение величины
по соответствующему циклу приведет к уменьшению значения Z(
) на величину
, т.е. опорное решение можно улучшить. Если же величины
, называемые оценками, для всех свободных клеток таблицы транспортной задачи неотрицательны, то значение целевой функции нельзя уменьшить и опорное решение оптимально. Следовательно, признаком оптимальности распределительного метода является условие
=0. (11)
Для решения транспортной задачи распределительным методом необходимо найти начальное опорное решение. Затем для очередной опорной клетки (l, k) построить цикл и вычислить оценку
. Если оценка неотрицательная, переход к следующей свободной клетке. Если же оценка отрицательная, следует осуществить сдвиг по циклу на величину
=
. В результате получится новое опорное решение.
Для каждого нового опорного решения вычисление оценок начинается с первой свободной клетки таблицы. Очевидность проверяемых свободных клеток целесообразно устанавливать в порядке возрастания стоимости перевозок
, так как решается задача на нахождение минимума.






