До сих пор рассматривались транспортные задачи с правильным балансом. Однако на практике чаще встречаются задачи с неправильным балансом. Каковы особенности их решения?
1. Пусть суммарные запасы поставщиков превосходят суммарные запросы потребителей, т.е.
. Очевидно, что в этом случае при составлении оптимального плана перевозок часть запасов поставщиков, равная
=
, останется не вывезенной. Поэтому в системе ограничений транспортной задачи первую группу уравнений (2) следует заменить неравенствами
, i=1,2,…,m. (15)
Вторая группа уравнений остается без изменения, так как запросы всех потребителей удовлетворяются полностью. Для приведения к канонической форме в неравенства (15) вводят дополнительные переменные
. В результате первые m ограничений задачи принимают вид
, i=1,2,…,m.
В целевую функцию дополнительные переменные не входят (входят с нулевыми коэффициентами). Математическая модель задачи принимает вид
, (16)
, i=1,2,…,m, (17)
, j=1, 2, …, n, (18)
, i=1,2,,…,m, j=1,2,…,n+1. (19)
Запишем необходимое и достаточное условие разрешимости задачи (см. теорему1):
.
Отсюда
.
Следовательно, чтобы задача в рассматриваемом случае имела решение, необходимо ввести фиктивного потребителя с запросами
, равными разности суммарных запасов поставщиков и запросов потребителей, и нулевыми стоимостями перевозок единиц груза
.
2. Аналогично в случае, когда суммарные запросы потребителей превосходят суммарные запасы поставщиков, т.е.
, часть запросов потребителей, равная
=
, останется не удовлетворенной. Поэтому вторая группа уравнений системы ограничений (3) транспортной задачи заменяется неравенствами
, j=1, 2, …, n.
После введения дополнительных переменных
в эти неравенства математическая модель задачи примет вид
, (20)
, i=1,2,…,m, (21)
, j=1, 2, …, n, (22)
, i=1,2,,…,m+1, j=1,2,…,n. (23)
Для того чтобы задача имела решение, необходимо и достаточно, чтобы
.
Отсюда
.
Следовательно, чтобы в этом случае задача имела решение, необходимо ввести фиктивного поставщика с запасами
, равными разности суммарных запросов потребителей и запасов поставщика, и нулевыми стоимостями перевозок единиц груза
.
Необходимо отметить, что при составлении начального опорного решения в последнюю очередь следует распределять запасы фиктивного поставщика и удовлетворять запросы фиктивного потребителя, несмотря на то, что им соответствует наименьшая стоимость перевозок, равная нулю.