double arrow

Наивероятнейшее число успехов.


Число m, при котором биномиальные вероятности Pn(m) достигают своего максимального значения (при фиксированном числе испытаний n) называют обычно наиболее вероятным (наивероятнейшим) числом успехов. Справедливо следующее утверждение о наивероятнейшим числе успехов:

Наивероятнейшее число успехов m* в серии из n независимых испытаний Бернулли (с вероятностью успеха р в одном испытании) определяется соотношением np-q£m*£np+p, причем

1. если число np-q - дробное, то существует одно наивероятнейшее число m*;

Если число np-q - целое, то существует два наивероятнейших числа

m*=np-q, m*=np+p;

3. если np - целое число, то наивероятнейшее число m*=np.

Задача 3. Монета подбрасывается 3 раза. Найти наиболее вероятное число успехов (выпадений герба).

Решение. Возможными значениями для числа успехов в 3-х рассматриваемых испытаниях являются m = 0, 1, 2 или 3. Пусть Am - событие , состоящее в том, что при 3-х подбрасываниях монеты герб появляется m раз. По формуле Бернулли легко найти вероятности событий Am (см. таблицу):

m
Pn(m) 1/8 3/8 3/8 1/8

Из этой таблицы видно, что наиболее вероятными значениями являются числа 1 и 2 (их вероятности равны 3/8). Этот же результат можно получить и из приведенного выше утверждения.




Задача 4.Вероятность получения удачного результата при производстве сложного химического опыта равна ¾. Найти наивероятнейшее число удачных опытов, если общее их количество равно 10.

Решение. В этом примере n=10, p=3/4=0,75, q=1/4=0,25. Тогда неравенство для наиболее вероятного числа успехов выглядит так:

np-q£m*£np+p,

т.е. 10*0,75-0,25 £m*£10*0,75+0,75,

или 7,25£m*£8,25.

Существует только одно целое решение этого неравенства, а именно, m*=8.







Сейчас читают про: