Выбор диапазона измерения

От правильного выбора диапазона измерения в значительной мере зависят достоверность результатов измерения (регистрации) и эффективность работы в эксперименте. Выбор нужного диапазо­на может выполняться вручную (самим пользователем) или авто­матически, благодаря логике работы прибора (микропроцессору). Если ничего не известно о возможном значении измеряемого па­раметра, необходимо, начиная измерять со старшего («грубого») диапазона, и, постепенно переходя на более чувствительный, ис­кать подходящий. Всегда нужно стремиться выбрать такой диапа­зон, на котором показания индикатора содержат максимальное число значащих цифр.

Рассмотрим вопрос выбора диапазона измерения на примере статического измерения действующего значения силы переменно­го (периодического) тока многопредельным ЦМ. Действующее значение тока на интервале экспериментов считаем неизменным. Пренебрегая методическими погрешностями, погрешностями вза­имодействия, субъективными погрешностями, оценим количе­ственно абсолютные D и относительные δ инструментальные по­грешности результатов измерения тока на всех диапазонах. При этом воспользуемся наиболее простым – детерминированным под­ходом (методом наихудшего случая), т.е. определим максимально возможные значения погрешностей при заданных условиях.

Допустим, имеем мультиметр с тремя диапазонами измерения переменного тока: первый диапазон 0... 10 А; второй 0... 1,0 А; тре­тий 0... 100 мА. Длина шкалы прибора L = 999 точек (т.е. равна трем полным десятичным разрядам) на всех диапазонах. Предположим для простоты, что класс точности прибора на всех диапазонах оди­наков и определяется предельным значением основной абсолютной погрешности:

Dп = ±(0,005 X + 0,01 X к),

где X –измеренное значение (результат измерения); X к–верхнее значение конкретного диапазона измерения.

Предположим также, что условия эксплуатации прибора в те­чение времени экспериментов нормальные, т.е. имеет место толь­ко основная инструментальная погрешность. (Если бы это было не так, то следовало бы оценить дополнительную погрешность и най­ти суммарную погрешность.)

Допустим, выполнено три эксперимента – измерены значения тока Ix в исследуемой цепи поочередно на каждом из трех диапазо­нов и получены следующие результаты:

0,06 А на диапазоне 0... 10 А;

0,062 А на втором диапазоне – 0... 1,0 А;

62,4 мА на третьем диапазоне – 0... 100 мА.

Предельное значение основной абсолютной погрешности D1 первого результата измерений может быть найдено по классу точ­ности ЦМ:

D1 = ±(0,005 · 0,06 + 0,01 · 10) = ±0,1003 А ≈ ±100 мА.

Предельные значения основных абсолютных погрешностей D2, D3 второго и третьего результатов измерений могут быть найдены соответственно:

D2 = ±(0,005 · 62 + 0,01 · 1000) = ±10,31 мА ≈ ±10 мА;

D3 = ±(0,005 · 62,4 + 0,01 · 100) = ±1,312 мА ≈ ±1,3 мА.

Предельные значения соответствующих основных относитель­ных погрешностей δ1, δ2, δ3 на каждом из трех диапазонов равны, соответственно: δ1 ≈ ±167 %; δ2 ≈ ±6 %; δ3 ≈ ±2,1 %.

Очевидно, что в данном случае для измерения такого значения тока правильнее выбрать третий диапазон (0... 100 мА), так как он обеспечивает значительно меньшую погрешность, чем на втором и тем более на первом (почти в 80 раз) диапазонах.

Корректная запись окончательного результата измерения Ix в этом примере (для диапазона 0... 100 мА) выглядит так:

Ix = 62,4 мА; D = ±1,3 мА с вероятностью р дов = 1.

Строго говоря, необходимо учитывать и другие возможные составляющие общей погрешности результата, например, по­грешность взаимодействия, которая может быть вызвана недо­статочно малым входным сопротивлением ЦМ в режиме изме­рителя тока.

Большинство современных моделей ЦМ имеют режимы как руч­ного, так и автоматического выбора диапазона (АВД) измерения (Autoranging DMM). Режим АВД позволяет оператору не заботить­ся о переключении диапазонов. Особенно это важно, когда о вход­ном измеряемом параметре не известно ничего, или, если изме­ряемый параметр в процессе наблюдения может сильно меняться (например, в 2...5 раз). Помимо очевидного удобства работы и уп­рощения использования прибора, режим АВД обеспечивает полу­чение результата с максимально достижимыми точностью и разрешающей способностью. Правда, АВД, как правило, снижает бы­стродействие прибора.

В простейшем варианте, при длине шкалы, равной целому числу десятичных разрядов, алгоритм АВД таков. Работа прибора начина­ется с включения самого старшего (грубого) диапазона, на кото­ром выполняется обычное аналого-цифровое преобразование. За­тем контроллер (микропроцессор) прибора автоматически анали­зирует содержимое старшего десятичного разряда полученного ре­зультата. Если оно равно нулю, то включается ближайший младший (более чувствительный) диапазон и выполняется новое преобразо­вание. И вновь контроллер определяет содержимое старшего разря­да. Если, предположим, он опять равен нулю, то включается следу­ющий младший (еще более чувствительный) диапазон. Таким обра­зом, контроллер прибора с АВД в этом алгоритме начиная со старше­го диапазона автоматически перебирает поочередно несколько диа­пазонов (может быть все) и останавливается на том, где результат преобразования будет содержать значащие цифры во всех разрядах (или на самом младшем при входном сигнале малого уровня).

Если сигнал в процессе циклической работы будет заметно уве­личиваться, так, что потребуется переход на соседний более стар­ший диапазон, то это произойдет по сигналу перегрузки, который формируется при переполнении счетчика АЦП. Для обеспечения устойчивости работы прибора вблизи границ диапазонов в алго­ритме работы предусмотрен обычно некоторый гистерезис (10...20%) при переходах из одного диапазона в другой.

В некоторых моделях ЦМ реализован более логичный алгоритм, при котором контроллер анализирует все разряды результата пре­образования и сразу определяет, на какой диапазон следует пере­ключить ЦМ.

ГЛАВА 6. ЦИФРОВАЯ РЕГИСТРАЦИЯ И АНАЛИЗ СИГНАЛОВ


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: