Классификация измерений

1.2.1. Основные понятия и определения

Под измерениями понимают способ количественного познания свойств физических объектов. Существуют различные физические объекты, обладающие разнообразными физическими свойствами, количество которых не

ограниченно. Человек в своем стремлении познать физические объекты - объекты познания - выделяет некоторое ограниченное количество свойств, общих в качественном отношении для ряда объектов, но индивидуальных для каждого из них в количественном отношении. Такие свойства получили название физических величин.

Физические величины различают в качественном и количественном отношении. Качественная сторона определяет "вид" величины (например, длина), а количественная - ее "размер" (например, длина конкретного объекта). Таким образом, физическая величина - свойство, общее в качественном отношении для каждого из них. Количественное содержание свойства, соответствующего понятию "физическая величина", в данном объекте - размер физической величины. Размер физической величины существует объективно, вне зависимости от того, что мы знаем о нем.

В результате измерений человек получает знания об объектах в виде значений физических величин. Понятие "физическая величина" распространяют на свойства, изучаемые не только в физике, но и в других областях науки и техники.

В ГОСТ 16263-70 "Метрология. Термины и определения" дано определение понятия "измерение": измерение - нахождение значения физической величины опытным путем с помощью специальных технических средств.

В этом определении отражены следующие главные признаки понятия "измерение":

а) измерять можно свойства реально существующих объектов познания, т.е. физические величины;

б) измерение требует проведения опытов, т. е. теоретические рассуждения или расчеты не могут заменить эксперимент;

в) для проведения опытов требуются особые технические средства - средства измерений, приводимые во взаимодействие с материальным объектом;

г) результатом измерения является значение физической величины.

Принципиальная особенность измерения заключается в отражении размера физической величины числом. Число может быть выражено любым принятым способом, например комбинацией цифр, комбинацией уровней электрических напряжений и т.д.

Значение физической величины - количественная оценка измеряемой величины должна быть не просто числом, а числом именованным, т.е. результат измерений должен быть выражен в определенных единицах, принятых для данной величины. Только в этом случае результаты измерений, полученные различными средствами и разными экспериментаторами, сопоставимы.

Результат измерения практически всегда отличается от истинного значения физической величины - значения, которое выражает размер величины абсолютно точно. Истинное значение физической величины определить невозможно.

Отличие результата измерения от истинного значения объясняется несовершенством средств измерений, несовершенством способа применения средства измерений, влиянием условий выполнения измерения, участием человека с его ограниченными возможностями и т.д.

Отклонение результата измерения от истинного значения измеряемой величины называют погрешностью измерения. Погрешность измерения ‑ DX=X-Xи, где X-измеренное значение; Xи- истинное значение.

Поскольку истинное значение неизвестно, практически погрешность измерений оценивают исходя из свойств средства измерений, условий проведения эксперимента и анализа полученных результатов. Полученный результат отличается от истинного значения, поэтому результат измерения имеет ценность только в том случае, если дана оценка погрешности полученного значения измеряемой величины. Причем чаще всего определяют не конкретную погрешность результата, а степень недостоверности - границы зоны, в которой находится погрешность.

Часто применяют понятие " точность измерения ", имея при этом в виду качество измерения, отражающее близость результата измерения к истинному значению измеряемой величины. Высокая точность измерения соответствует малой погрешности измерения.

Совокупность величин, связанных между собой зависимостями, образует систему физических величин. Объективно существующие зависимости между физическими величинами представляют рядом независимых уравнений. Число уравнений m всегда меньше числа величин n. Поэтому m величин данной системы определяют через другие величины, а n-m величин - независимо от других. Последние величины принято называть основными физическими величинами, а остальные - производными физическими величинами.

В качестве основных могут быть выбраны любые из данного числа величин, но практически выбирают те, которые могут быть воспроизведены и измерены с наиболее высокой точностью. В технике, например, основными величинами приняты длина, масса, время и сила электрического тока, температура.

Зависимость каждой производной величины от основных отображается ее размерностью. Размерность величины представляет собой произведение обозначений основных величин, возведенных в соответствующие степени, и является ее качественной характеристикой. Размерности величин определяют на основе соответствующих уравнений физики.

Физическая величина является размерной, если в ее размерность входит хотя бы одна из основных величин, возведенная в степень, не равную нулю. Большинство физических величин являются размерными. Однако имеются безразмерные (относительные) величины, представляющие собой отношение данной физической величины к одноименной, применяемой в качестве исходной (опорной). Безразмерными величинами являются, например, коэффициент трансформации, затухание и т.д.

Физическая величина в зависимости от множества размеров, которые они могут иметь при изменении в ограниченном диапазоне, подразделяют на непрерывные (аналоговые) и квантованные (дискретные) по размеру (уровню).

Аналоговая величина может иметь в заданном диапазоне бесконечное множество размеров. Таким является подавляющее число физических величин (длина, напряжение, сила тока, температура и т.д.). Квантованная величина имеет в заданном диапазоне только счетное множество размеров. Примером такой величины может быть малый электрический заряд, размер которого определяется числом входящих в него зарядов электронов. Размеры квантованной величины могут соответствовать только определенным уровням - уровням квантования. Разность двух соседних уровней квантования называют ступенью квантования - (квантом).

Значение аналоговой величины определяют путем измерения с неизбежной погрешностью. Квантованная величина может быть определена путем счета ее квантов, если они постоянны.

Физические величины могут быть постоянными или переменными во времени. При измерении постоянной во времени величины достаточно определить одно ее мгновенное значение. Переменные во времени величины могут иметь квазидетерминированный или случайный характер изменения.

Квазидетерминированная физическая величина - величина, для которой известен вид зависимости от времени, но неизвестен измеряемый параметр этой зависимости. Случайная физическая величина - величина, размер которой изменяется во времени случайным образом. Как частный случай переменных во времени величин можно выделить дискретные во времени величины, т. е. величины, размеры которых отличны от нуля только в определенные моменты времени.

Физические величины делят на активные и пассивные. Активные величины (например, механическая сила, ЭДС источника электрического тока) способны без вспомогательных источников энергии создавать сигналы измерительной информации. Пассивные величины (например, масса, электрическое сопротивление, индуктивность) сами не могут создавать сигналы измерительной информации. Для этого их нужно активизировать с помощью вспомогательных источников энергии, например при измерении сопротивления резистора через него должен протекать ток. В зависимости от объекта исследования говорят об электрических, магнитных или неэлектрических величинах.

Физическую величину, которой по определению присвоено числовое значение, равное единице, называют единицей физической величины. Размер единицы физической величины может быть другим. Однако измерения должны выполняться в общепринятых единицах. Общность единиц в международном масштабе устанавливают международными соглашениями. В СССР раньше действовал ГОСТ 8.417-81 (СТ СЭВ 1052-78) "Государственная система обеспечения единства измерений. Единицы физических величин", согласно которому в нашей стране введена к обязательному применению международная система единиц (СИ).

Все измерения физических величин выполняют с помощью средств измерений. Для выполнения измерений с учетом различных требований и различных условий используются различные средства измерений.

По функциональному назначению все средства измерений разделяют на следующие группы: меры, измерительные преобразователи, измерительные приборы, измерительные информационные системы и измерительные установки.

Свойства средств измерений оценивают характеристиками, среди которых выделяют комплекс метрологических характеристик, т.е. характеристик, которые необходимы при оценке точности результатов измерений. Важным отличительным признаком средств измерений является наличие у них нормированных метрологических характеристик, благодаря чему при надлежащем применении средств измерений может быть оценена точность получаемых результатов измерений.

Обобщенной метрологической характеристикой средства измерений является класс точности, определяемый пределами допускаемых погрешностей и другими свойствами средства измерений, влияющими на точность результатов измерений.

Наряду с измерениями информацию о свойствах объектов материального мира можно получить также с помощью счета, контроля, технического диагностирования и распознавания образов.

Счетом называют определение числа качественно однотипных объектов в данной их совокупности.

Контроль - процесс установления соответствия между состоянием объекта контроля и заданной нормой. При контроле нет необходимости знать численное значение контролируемой величины. Однако контроль содержит ряд операций, присущих измерениям (измерительные преобразования, сравнения). Поэтому вопросы точности для контроля имеют существенное значение. Контроль может выполняться как с участием человека, так и автоматически, с помощью контрольно-измерительных приборов и систем автоматического контроля.

Во многих случаях для восстановления нормальной работы объекта необходимо выявить элементы, послужившие причиной неправильного функционирования объекта. Появилась необходимость в техническом диагностировании, под которым понимают процедуру для обнаружения отказов отдельных элементов объектов, т.е. определения технического состояния объекта диагностирования. Техническое диагностирование осуществляют с помощью систем технического диагностирования.

Процедуру, связанную с определением соответствия между исследуемым объектом и заданным образом, называют распознаванием образа. Основная задача распознавания образа заключается в сопоставлении по признакам распознавания "эталонных" образов с данным объектом и решении вопроса об отнесении объекта к определенному образу. При распознавании материальных объектов и происходящих в них процессов, характеризующихся параметрами, эти параметры измеряют и сопоставляют их значения с областью значений, определяющих количественное описание свойств образа.

Производством и применением средств измерений для получения измерительной информации, а также научными вопросами, возникающими при этом, занимается отрасль науки и техники, называемая измерительной техникой. Таким образом, измерительная техника рассматривается как область деятельности людей, включающая в себя научную деятельность, производство и эксплуатацию средств измерений. Часть научных основ измерительной техники составляет метрология как наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности.

Следует отметить, что под измерительной техникой часто понимают только совокупность средств измерений и способов их применения для получения измерительной информации.

1.2.2. Виды и методы измерений

Измерения как экспериментальные процедуры определения значений измеряемых величин весьма разнообразны, что объясняется множеством измеряемых величин, различным характером их изменения во времени, различными требованиями к точности измерений и т.д.

Измерения в зависимости от способа обработки экспериментальных данных для нахождения результата относят к прямым, косвенным, совместным или совокупным.

Прямое измерение - измерение, при котором искомое значение величины находят непосредственно из опытных данных в результате выполнения измерения.

Пример прямого измерения - измерение вольтметром напряжения источника.

Косвенное измерение - измерение, при котором искомое значение величины находят на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям. При косвенном измерении значение измеряемой величины получают путем решения уравнения X=F (X1 , X2 , X3 ,..., Xn ), где X1, X2 , X3 ,..., Xn- значения величин, полученных прямыми измерениями.

Пример косвенного измерения: сопротивление резистора R находят из уравнения R=U / I, в которое подставляют измеренные значения падения напряжения U на резисторе и тока I через него.

Совместные измерения - одновременные измерения нескольких неодноименных величин для нахождения зависимости между ними. При этом решают систему уравнений

F(X1 , X2 , X3 ,..., X n , X¢1 , X¢2 , X¢3 ,..., X¢m ) = 0;

F(X1 , X2 , X3 ,..., X n , X¢¢1 , X¢¢2 , X¢¢3 ,..., X¢¢m)=0;

...............................................

F(X1 , X2 , X3 ,..., X n , X1 (n), X2(n), X3(n),..., Xm(n))=0,

где X1 , X2 , X3 ,..., Xn - искомые величины;

1 , X¢2 , X¢3 ,..., X¢m ; X¢¢1 , X¢¢2 , X¢¢3 ,..., X1 (n), X2(n), X3(n),...,

Xm(n) -значения измеренных величин.

Пример совместного измерения: определяют зависимость сопротивления от температуры Rt=Ro(1+At+Bt2); измеряя сопротивление резистора при трех различных температурах, составляют систему из трех уравнений, из которых находят параметры Ro, A и B зависимости.

Совокупные измерения - одновременные измерения нескольких одноименных величин, при котором искомое значение величин находят решением системы уравнений, составленных из результатов прямых измерений различных сочетаний этих величин.

Пример совокупного измерения: измерение сопротивлений резисторов, соединенных треугольником, путем измерений сопротивлений между различными вершинами треугольника; по результатам трех измерений определяют сопротивления резисторов.

В зависимости от объекта исследования, свойств средств измерений, принятой модели объекта и других причин измерения выполняют с однократным либо с многократными наблюдениями. Наблюдение - экспериментальная операция, выполняемая в процессе измерения, в результате которой получают одно из группы значений величины.

В последнем случае для получения результата измерения требуется статистическая обработка наблюдений. Измерения вероятностных характеристик случайных процессов называют статистическими измерениями.

Измерения разделяют на статические и динамические в зависимости от режима работы применяемых средств измерений. К статическим измерениям относят измерение, при котором средство измерений работает в статическом режиме, т.е. когда выходной сигнал средства, например отклонение указателя, остается неизменным в течении времени использования выходного сигнала. К динамическим измерениям относят измерение, выполняемое средством измерений в динамическом режиме, т.е. когда выходной сигнал средства изменяется во времени так, что для получения результата измерений необходимо учитывать это изменение. Для оценки точности результатов динамических измерений необходимо знание динамических свойств средств измерений.

Определение последовательных значений величины, изменяющейся во времени, производят для нахождения временной зависимости изменений этой величины. В этом случае определяют ряд значений, т. е. производят несколько измерений, причем в каждом из них измеряемой должна быть мгновенная величина - величина, соответствующая определенному моменту времени. Если на заданном интервале времени число измеряемых мгновенных величин конечно, то говорят о дискретных измерениях, а если бесконечно, - то это аналоговые измерения.

В зависимости от точности оценки погрешности измерения бывают с точной оценкой и с приближенной оценкой погрешности. При измерениях с точным оцениванием погрешности учитывают индивидуальные свойства средств измерений и контролируют условия измерений. При измерениях с приближенным оцениванием погрешности учитывают нормативные данные о средствах измерений и приближенно оценивают условия измерений. Последних измерений подавляющее число.

Взаимодействие средств измерений с объектом основано на физических явлениях, совокупность которых составляет принцип измерений, а совокупность приемов использования принципа и средств измерений называют методом измерений.

Как уже указывалось, числовое значение измеряемой величины получается путем ее сравнения с известной величиной, воспроизводимой определенным видом средств измерений - мерой.

В зависимости от способа применения меры известной величины выделяют метод непосредственной оценки и методы сравнения с мерой.

При методе непосредственной оценки значение измеряемой величины определяют непосредственно по отсчетному устройству измерительного прибора прямого преобразования шкала которого заранее была градуирована с помощью многозначной меры, воспроизводящей известные значения измеряемой величины. В приборах прямого преобразования в процессе измерения оператором производится сравнение положения указателя отсчетного устройства и шкалы, по которой производится отсчет. Измерение длины с помощью линейки - пример измерения по методу непосредственной оценки.

Методы сравнения с мерой - методы, при которых производится сравнение измеряемой величины и величины, воспроизводимой мерой. Сравнение может быть непосредственным или опосредствованным через другие величины, однозначно связанные с первыми. Отличительной чертой методов сравнения является непосредственное участие в процессе измерения меры известной величины, однородной с измеряемой.

Группа методов сравнения с мерой включает в себя следующие методы: нулевой, дифференциальный, замещения и совпадения.

При нулевом методе измерения разность измеряемой величины и известной величины или разность эффектов, производимых измеряемой и известной величинами, сводится в процессе измерения к нулю, что фиксируется высокочувствительным прибором - нуль - индикатором. При высокой точности мер, воспроизводящих известную величину, и высокой чувствительности нуль - индикатора может быть достигнута высокая точность измерений. Примером применения нулевого метода является измерение сопротивления резистора с помощью четырехплечего моста, в котором падение напряжения на резисторе с неизвестным сопротивлением уравновешивается падением напряжения на резисторе известного сопротивления.

При дифференциальном методе разность измеряемой величины и величины известной, воспроизводимой мерой, измеряется с помощью измерительного прибора. Неизвестная величина определяется по известной величине и измеренной разности. В этом случае уравновешивание измеряемой величины известной величиной производится не полностью и в этом заключается отличие дифференциального метода от нулевого. Дифференциальный метод также может обеспечить высокую точность измерения, если известная величина воспроизводится с высокой точностью и разность между ней и неизвестной величиной мала.

При методе замещения производится поочередное подключение на вход прибора измеряемой величины и известной величины и по двум показаниям прибора оценивается значение неизвестной величины. Наименьшая погрешность измерения получается в том случае, когда в результате подбора известной величины прибор дает тот же выходной сигнал, что и при неизвестной величине. При этом методе может быть получена высокая точность измерения при высокой точности меры известной величины и высокой чувствительности прибора. Примером этого метода является точное измерение малого напряжения с помощью высокочувствительного гальванометра, к которому сначала подключают источник неизвестного напряжения и определяют отклонение указателя, а затем с помощью регулируемого источника известного напряжения добиваются того же отклонения указателя. При этом известное напряжение равно неизвестному.

При методе совпадения измеряют разность между измеряемой величиной и величиной, воспроизводимой мерой, используя совпадение отметок шкал или периодических сигналов. Примером этого метода является измерение частоты вращения детали с помощью мигающей лампы стробоскопа: наблюдая положение метки на вращающейся детали в моменты вспышек лампы, по частоте вспышек и смещению метки определяют частоту вращения детали.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: