Неопределенность координаты и импульса

Центральными в квантовой механике являются понятие амплитуды вероятности и принцип суперпозиции состояний. Описание состояний частиц с помощью амплитуд вероятности говорит о том, что в каждый момент времени точечная частица занимает сразу некоторую область пространства. Связанное состояние частицы описывается локализованным в ограниченной области пространства распределением амплитуд вероятности. Такому распределению отвечает некоторый размер области локализации Dx.

Частица, находящаяся в локализованном состоянии, не имеет определенного значения импульса. Если проводить измерения импульса локализованной частицы, результатами эксперимента будут являться случайные значения, распределенные около нуля. Разброс измеряемых значений импульса Dpx тем больше, чем в меньшей области локализовано распределение амплитуды вероятности. В этом состоит принцип неопределенностей. На рисунке 44 изображены графики распределений вероятности координаты частицы (ввер­ху) и значений импульса в том же состоянии (внизу). Математическое выражение принципа имеет вид
DpxDx~ћ /2. (1)

Из принципа неопределенности в частности следует, что для того, чтобы локализовать положение частицы, надо совершить работу.

Задача 1. Частица массы m находится в непроницаемом ящике размером L,с подвижной стенкой. Используя принцип неопределенностей оцените увеличение энергии частицы при уменьшении размера ящика путем перемещения подвижной стенки на dL. Используя полученный результат, найдите силу, с которой частица действует на стенку.

Локализованная частица создает давление на тела, которые ограничивают область расположения частицы (гайзенберговское давление). В атоме электронное давление компенсируется силой притяжения к ядру. В ядре из-за сильной локализации нуклонов гайзенберговское давление чрезвычайно велико, поэтому только мощное адронное притяжение способно удерживать его от разрыва.

Задача 2. На малых расстояниях ядерное притяжение гораздо сильнее электростатического притяжения разноименно заряженных частиц. Объясните кажущийся парадокс: почему слабое электростатическое притяжение удерживает электрон около протона в атоме водорода, а более сильное ядерное притяжение не способно удержать вместе два нейтрона.

Вопрос 1. Какой из атомов больше: водородаилигелия? Дайте обоснование своему ответу.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: