Как можно отблагодарить автора?


 

Наибольшее и наименьшее значения функции на отрезке

Миниатюрная и довольно простая задача из разряда тех, которые служат спасательным кругом плавающему студенту. На природе сонное царство середины июля, поэтому самое время устроиться с ноутбуком на пляже. Ранним утром заиграл солнечный зайчик теории, чтобы в скором времени сфокусироваться на практике, которая, несмотря на заявленную лёгкость, содержит осколки стекла в песке. В этой связи рекомендую добросовестно рассмотреть немногочисленные примеры этой странички. Для решения практических заданий необходимо уметь находить производные и понимать материал статьи Интервалы монотонности и экстремумы функции.

Сначала коротко о главном. На уроке о непрерывности функции я приводил определение непрерывности в точке и непрерывности на интервале. Образцово-показательное поведение функции на отрезке формулируется похожим образом. Функция непрерывна на отрезке если:

1) она непрерывна на интервале ;
2) непрерывна в точке справа и в точке слева.

Во втором пункте речь зашла о так называемой односторонней непрерывности функции в точке. Существует несколько подходов к её определению, но я буду придерживаться начатой ранее линии:

Функция непрерывна в точке справа, если она определена в данной точке и её правосторонний предел совпадает со значением функции в данной точке: . Она же непрерывна в точке слева, если определена в данной точке и её левосторонний предел равен значению в этой точке:

Представьте, что зелёные точки – это гвозди, на которых закреплена волшебная резинка:

Мысленно возьмите красную линию в руки. Очевидно, что как бы далеко мы не растягивали график вверх и вниз (вдоль оси ), функция всё равно останется ограниченной – изгородь сверху, изгородь снизу, и наше изделие пасётся в загоне. Таким образом, непрерывная на отрезке функция ограничена на нём. В курсе матанализа этот вроде бы простой факт констатируется и строго доказывается первой теоремой Вейерштрасса. …Многих раздражает, что в математике нудно обосновываются элементарные утверждения, однако в этом есть важный смысл. Предположим, некий житель махрового средневековья вытягивал график в небо за пределы видимости вот это вставляло. До изобретения телескопа ограниченность функции в космосе была вовсе не очевидна! Действительно, откуда вы знаете, что нас ждёт за горизонтом? Ведь когда-то и Земля считалась плоской, поэтому сегодня даже обыденная телепортация требует доказательства =)

Согласно второй теореме Вейерштрасса, непрерывная на отрезке функция достигает своей точной верхней грани и своей точной нижней грани .

Число также называют максимальным значением функции на отрезке и обозначают через , а число минимальным значением функции на отрезке с пометкой .

В нашем случае:

Примечание: в теории распространены записи .

Грубо говоря, наибольшее значение находится там, где самая высокая точка графика, а наименьшее – где самая низкая точка.

Важно! Как уже заострялось внимание в статье об экстремумах функции, наибольшее значение функции и наименьшее значение функцииНЕ ТО ЖЕ САМОЕ, что максимум функции и минимум функции. Так, в рассматриваемом примере число является минимумом функции, но не минимальным значением.

Кстати, а что происходит вне отрезка ? Да хоть потоп, в контексте рассматриваемой задачи это нас совершенно не интересует. Задание предполагает лишь нахождение двух чисел и всё!

Более того, решение чисто аналитическое, следовательно, чертежа делать не надо!

Алгоритм лежит на поверхности и напрашивается из приведённого рисунка:

1) Находим значения функции в критических точках, которые принадлежат данному отрезку.

Ловите ещё одну плюшку: здесь отпадает необходимость проверять достаточное условие экстремума, поскольку, как только что было показано, наличие минимума или максимума ещё не гарантирует, что там минимальное или максимальное значение. Демонстрационная функция достигает максимума и волей судьбы это же число является наибольшим значением функции на отрезке . Но, понятно, такое совпадение имеет место далеко не всегда.

Итак, на первом шаге быстрее и проще вычислить значения функции в критических точках, принадлежащих отрезку, не заморачиваясь есть в них экстремумы или нет.

2) Вычисляем значения функции на концах отрезка.

3) Среди найденных в 1-ом и 2-ом пунктах значений функции выбираем самое маленькое и самое большое число, записываем ответ.

Садимся на берег синего моря и бьём пятками по мелководью:

Пример 1

Найти наибольшее и наименьшее значения функции на отрезке

Решение:
1) Вычислим значения функции в критических точках, принадлежащих данному отрезку:

Полученное квадратное уравнение имеет два действительных корня:
– критические точки.

Ещё раз подчёркиваю, что нас не интересует, есть в них максимумы/минимумы или нет.

Первая критическая точка принадлежит данному отрезку:
А вот вторая – нет: , поэтому про неё сразу забываем.

Вычислим значение функции в нужной точке:

Итоговый результат я выделил жирным цветом, при оформлении задания в тетради его удобно обвести в кружок простым карандашом или пометить как-то по-другому.

2) Вычислим значения функции на концах отрезка:

Результаты опять каким-либо образом выделяем.

3) Дело сделано, среди «жирных» чисел выбираем наибольшее и наименьшее.

Ответ:

Критическое значение на поверку оказалось точкой максимума, но об этом нас никто не спрашивал. Впрочем, для саморазвития можете устно подмечать такие факты.

Пример 2

Найти наибольшее и наименьшее значения функции на отрезке

Это пример для самостоятельного решения. Примерный образец чистового оформления в конце урока.

В рассматриваемой задаче очень важно не допускать вычислительных ошибок, так как рецензент немедленно посмотрит, сами догадываетесь куда.

Другой существенный момент касается пункта №1.

Во-первых, критических точек может не оказаться вообще. Это очень хорошо – меньше вычислений. Просто записываем вывод: «критические точки отсутствуют» и переходим ко второму пункту алгоритма.

Во-вторых, все критические точки (одна, две или бОльшее количество) могут не принадлежать отрезку. Замечательно. Пишем следующее: «критические точки (а) не принадлежат (ит) рассматриваемому отрезку». Находить какие-то значения функции здесь, разумеется, тоже не надо.

В моей коллекции есть и те и те примеры, но они унылы как бескрайние просторы Сахары. По сути, всё задание сводится к нахождению двух значений функции на концах интервала. Гораздо интереснее снять кепки, солнечные очки и отправиться играть в пляжный футбол:

Пример 3

Найти наибольшее и наименьшее значения функции на заданном отрезке

Решение: всё опять начинается дежурной фразой:
1) Вычислим значения функции в критических точках, принадлежащих данному отрезку:

Да, критических точек тут и правда целая команда:

Первые две точки принадлежат нашему отрезку:

Но третья оказывается вне игры:

(надеюсь, все сумели сосчитать )

Вычислим значения функции в подходящих точках:

Чтобы не заблудиться в трёх соснах, не забываем выделять результаты,

2) Вычислим значения функции на концах отрезка:

Среди «жирных» чисел выбираем наибольшее и наименьшее значения. Максимальное значение («пятёрка») достигается сразу в двух точках, и это необходимо указать в завершающей записи:

Ответ:

Время от времени критические точки могут совпадать с одним или даже с обоими концами отрезка, и в этом случае укорачивается второй этап решения. Следующий пример для самостоятельного изучения посвящен как раз такой ситуации:

Пример 4

Найти наибольшее и наименьшее значения функции на заданном отрезке

Примерный образец решения в конце урока.

Иногда техническая трудность рассматриваемого задания состоит в замысловатой производной и громоздких вычислениях:

Пример 5

Найти максимальное и минимальное значения функции на отрезке

Решение: отрезок, надо сказать, творческий, но пример взят из конкретной контрольной работы и ни в коем случае не придуман.

1) Вычислим значения функции в критических точках, которые принадлежат данному отрезку:

Очевидный корень оказывается не в теме: .

Решаем уравнение:

Второй корень принадлежит нашему отрезку:

Если вам не понятно, почему именно такой корень, обязательно обратитесь к школьному учебнику Алгебра и начала анализа 10-11 класс и повторите, что такое логарифм, ибо плох тот студент, который не мечтает овладеть логарифмами.

Дальнейшие вычисления задачи я распишу максимально подробно, но без комментариев. Некоторую информацию о логарифмической функции и свойствах логарифма можно почерпнуть в статье Графики и свойства элементарных функций и методичке по школьным формулам.

Вычислим значение функции во второй критической точке:

2) Вычислим значения функции на концах отрезка:

3) «Жирные» результаты получены с экспонентами и логарифмами, что существенно затрудняет их сравнение. По сей причине вооружимся калькулятором либо Экселем и вычислим приближённые значения, не забывая, что :

Вот теперь всё понятно.

Ответ:

Дробно-рациональный экземпляр для самостоятельного решения:

Пример 6

Найти максимальное и минимальное значения функции на отрезке

Вычисления в данном случае не менее кропотливы и точно так же потребуют вмешательства калькулятора (если вы, конечно, не вундеркинд). Полное решение и ответ в конце урока.

Стрелки часов приближаются к 9 утра, и побережье потихоньку заполняется всё бОльшим и бОльшим количеством стройных ног. Если честно, не терпится захлопнуть ноут и похулиганить, но всё-таки мужественно разберу нетривиальную вещь:

Пример 7

Найти максимальное и минимальное значения функции на отрезке

Решение:
1) Найдём критические точки. Предварительно можно раскрыть скобки, но не особо сложнее использовать и правило дифференцирования произведения:

– критические точки.

Обратите внимание, что точка обращает знаменатель производной в ноль, но её следует отнести к критическим значениям, поскольку САМА ФУНКЦИЯ определена в данной точке. На этом случае я подробно останавливался в теоретической части и последнем примере урока Интервалы монотонности. Экстремумы функции.

Кроме того, данная точка совпала с правым концом отрезка, а значит, в следующем пункте будет меньше расчётов. В следующем, но не сейчас:

2) Вычислим значения функции на концах отрезка:

уже известно.

Ответ:

Раз, два, три, четыре, пять – мне пора верстать.

Скорее всего, вы прочитали данную статью в ненастную погоду, поэтому желаю всем скорейшего летнего загара без зачётки в кармане! …ну или с дипломом на груди… …ой, что-то я не то сказал =)

Решения и ответы:

Пример 2: Решение:
1) Вычислим значения функции в критических точках, принадлежащих данному отрезку:

– критические точки.

2)Вычислим значения функции на концах отрезка:

Ответ:

Пример 4: Решение:
1) Вычислим значения функции в критических точках, принадлежащих данному отрезку:

– критические точки.

2) Вычислим значения функции на концах отрезка:
уже рассчитано в предыдущем пункте.

Ответ:

Пример 6: Решение:
1) Вычислим значения функции в критических точках, которые принадлежат данному отрезку:
– критические точки.

2) Вычислим значения функции на концах отрезка:

Ответ:

Автор: Емелин Александр

Высшая математика для заочников и не только >>>

(Переход на главную страницу)


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: