Первое достаточное условие экстремума

которое вкратце формулируется следующим образом: пусть функция дифференцируема в некоторой окрестности критической точки . Тогда:

если при переходе через точку производная меняет знак с «плюса» на «минус», то в данной точке функция достигает максимума;

если при переходе через точку производная меняет знак с «минуса» на «плюс», то в данной точке функция достигает минимума.

Тут всё очень и очень наглядно, представьте – функция росла-росла-росла, и после прохождения некоторого рубежа вдруг стала убывать. Максимум. Во втором случае график шёл-шёл-шёл «сверху вниз», а при переходе через точку развернулся в противоположную сторону. Минимум.

Исходя из вышесказанного, вытекает логичное решение: на числовой прямой нужно отложитьточки разрыва функции, критические точки и определить знаки производной на интервалах, которые входят в область определения функции.

В рассматриваемом примере с непрерывностью на всё тип-топ, поэтому работаем только с найдёнными критическими точками.

Напрашивается метод интервалов, который уже применялся для определения интервалов знакопостоянства функции. Так почему бы его не использовать для производной? Ведь производная тоже простая смертная функция, найдёшь её – и делай всё, что хочешь.

Внимание! Сейчас мы работаем с ПРОИЗВОДНОЙ, а не с самой функцией!

Перед нами парабола , ветви которой направлены вниз, и многим читателям уже понятны знаки производной, но ради повторения снова пройдёмся по всем этапам метода интервалов. Отложим на числовой прямой найденные критические точки:

I) Берём какую-нибудь точку интервала и находим значение производной в данной точке. Удобнее всего выбрать :
, значит, производная отрицательна на всём интервале .

II) Выбираем точку , принадлежащую интервалу , и проводим аналогичное действие:
, следовательно, на всём интервале .

III) Вычислим значение производной в наиболее удобной точке последнего интервала:
, поэтому в любой точке интервала .

В результате получены следующие знаки производной:

Время собирать урожай!

На интервалах производная отрицательна, значит, САМА ФУНКЦИЯ на данных интервалах убывает, и её график идёт «сверху вниз». На среднем интервале , значит, функция возрастает на , и её график идёт «снизу вверх».

При переходе через точку производная меняет знак с «–» на «+», следовательно, в этой точке функция достигает минимума:

При переходе же через точку производная меняет знак с «+» на «–», и функция достигает максимума в данной точке:

Ответ: функции возрастает на интервале и убывает на интервалах . В точке функция достигает минимума: , а в точке – максимума:

Остерегайтесь сокращенной записи . Под значками обычно понимают минимальное и максимальное значение, а это, как пояснялось выше, далеко не то же самое, что минимум и максимум.

Пример так тщательно провёрнут через мясорубку, что грех не привести графическое изображение всех событий. Незнакомец теоретической части статьи снимает шляпу:

Что произошло? На первом этапе мы нашли производную и критические точки (в которых парабола пересекает ось абсцисс). Затем методом интервалов было установлено, где (парабола ниже оси) и (парабола выше оси). Таким образом, с помощью производной мы узнали интервалы возрастания/убывания и экстремумы «синей» функции.

Помимо 1-го достаточного условия экстремума существует и другое, так называемое 2-ое достаточное условие экстремума. Однако для исследования функций оно малоинформативно и больше используется в экстремальных задачах.

В начале первой статьи о графиках функции я рассказывал, как быстро построить параболу на примере : «…берём первую производную и приравниваем ее к нулю: …Итак, решение нашего уравнения: – именно в этой точке и находится вершина параболы…». Теперь, думаю, всем понятно, почему вершина параболы находится именно в этой точке =) Вообще, следовало бы начать с похожего примера и здесь, но он уж слишком прост (даже для чайника). К тому же, аналог есть в самом конце урока о производной функции. Поэтому повысим степень:

Пример 2

Найти промежутки монотонности и экстремумы функции

Это пример для самостоятельного решения. Полное решение и примерный чистовой образец оформления задачи в конце урока.

Наступил долгожданный момент встречи с дробно-рациональными функциями:

Пример 3

Исследовать функцию с помощью первой производной

Обратите внимание, как вариативно можно переформулировать фактически одно и то же задание.

Решение:

1) Функция терпит бесконечные разрывы в точках .

2) Детектируем критические точки. Найдём первую производную и приравняем её к нулю:

Решим уравнение . Дробь равна нулю, когда её числитель равен нулю:

Таким образом, получаем три критические точки:

3) Откладываем на числовой прямой ВСЕ обнаруженные точки и методом интервалов определяем знаки ПРОИЗВОДНОЙ:

Напоминаю, что необходимо взять какую-нибудь точку интервала, вычислить в ней значение производной и определить её знак. Выгоднее даже не считать, а «прикинуть» устно. Возьмём, например, точку , принадлежащую интервалу , и выполним подстановку: .

Два «плюса» и один «минус» дают «минус», поэтому , а значит, производная отрицательна и на всём интервале .

Действие, как вы понимаете, нужно провести для каждого из 6-ти интервалов. Кстати, обратите внимание, что множитель числителя и знаменатель строго положительны для любой точки любого интервала, что существенно облегчает задачу.

Итак, производная сообщила нам, что САМА ФУНКЦИЯ возрастает на и убывает на . Однотипные интервалы удобно скреплять значком объединения .

В точке функция достигает максимума:
В точке функция достигает минимума:

Подумайте, почему можно заново не пересчитывать второе значение;-)

При переходе через точку производная не меняет знак, поэтому у функции там НЕТ ЭКСТРЕМУМА – она как убывала, так и осталась убывающей.

! Повторим важный момент: точки не считаются критическими – в них функция не определена. Соответственно, здесь экстремумов не может быть в принципе (даже если производная меняет знак).

Ответ: функция возрастает на и убывает на В точке достигается максимум функции: , а в точке – минимум: .

Знание интервалов монотонности и экстремумов вкупе с установленными асимптотами даёт уже очень хорошее представление о внешнем виде графика функции. Человек среднего уровня подготовки способен устно определить, что у графика функции есть две вертикальные асимптоты и наклонная асимптота . Вот наш герой:

Постарайтесь ещё раз соотнести результаты исследования с графиком данной функции.
В критической точке экстремума нет, но существует перегиб графика (что, как правило, и бывает в похожих случаях).

Пример 4

Найти экстремумы функции

Пример 5

Найти интервалы монотонности, максимумы и минимумы функции

…прямо какой-то Праздник «икса в кубе» сегодня получается....
Тааак, кто там на галёрке предложил за это выпить? =)

В каждой задаче есть свои содержательные нюансы и технические тонкости, которые закомментированы в конце урока.

Как отмечалось, в ходе выполнения задания всегда нужно внимательно следить за точками разрыва и интервалами, которые не входят в область определения функции. Казус состоит в том, что иногда производная может существовать на таких участках! Простейший пример: производная натурального логарифма определена на интервале , но сам логарифм – нет. Интервалы, которые не входят в область определения функции, НЕЛЬЗЯ рассматривать и у производной!

Типичный барьерный риф:

Пример 6

Найти интервалы монотонности и экстремумы функции

Приближаю оформление к боевым условиям и прекращаю нумерацию пунктов алгоритма.

Решение: в Примере 11 статьи об интервалах знакопостоянства была найдена область определения данной функции: , знание которой КРИТИЧЕСКИ ВАЖНО учитывать в нашей задаче:

Вроде бы всё хорошо: у нас есть корень и крайние точки области определения: .

Но производная проявила своеволие – она в отличие от свого родителя определена и на интервале . Более того, точка (не критическая!!!;)) вошла в этот нехороший интервал! Что делать? Мама всегда права, поэтому определяем знаки производной только на интервалах области определения функции:

Функция убывает на интервале и возрастает на интервале . Точки экстремума (и, понятно, экстремумы) ОТСУТСТВУЮТ. Значение осталось не при делах, так как на интервале попросту нет графика функции .

Ответ: функция убывает на интервале и возрастает на , экстремумы отсутствуют.

Будьте очень внимательны, если вам встретится логарифм или корень – в подобных примерах просто необходимо увАжить область определения функции!

Пример 7

Найти интервалы монотонности и экстремумы функции

Это приятный разгрузочный пример для самостоятельного решения.

И заключительный пример посвящен другому приключению непослушной дочери:

Пример 8

Найти точки экстремума функции

Решение: функция определена и непрерывна на всей числовой прямой.
Найдём критические точки:

На всякий случай детализирую преобразования знаменателя:
, затем сокращаем числитель и знаменатель на «икс».

Таким образом, – критические точки. Почему значения , обращающие знаменатель производной в ноль, следует отнести к критическим точкам? А дело в том, что САМА-ТО ФУНКЦИЯ в них определена! Ситуация необычна, но клубок распутывается по стандартной схеме.

Определим знаки производной на полученных интервалах:

Функция возрастает на интервале и убывает на .

В точке функция достигает минимума: .
В точке функция достигает максимума: .
В точке нет экстремума.

Ответ: – точка минимума, – точка максимума

По условию требовалось найти точки экстремума и что-то добавлять излишне. Но в решении как бы невзначай вычислены и сами экстремумы;-)

Давайте посмотрим на на эту оригинальную картину:

В точке – классическое остриё, направленное вниз, при – «нормальный» максимум. В точках функция не дифференцируема, однако в них существуют бесконечные производные и вертикальные касательные (см. теорию производной).

...да, родители и дети бывают разными. Но мама права в 95% случаев с погрешностью . Я проводил статистическое исследование.

Желаю успехов!

Решения и ответы:

Пример 2: Решение:

1) Функция определена и непрерывна на всей числовой прямой.
2) Найдём критические точки:

– критическая точка.
3) Методом интервалов определим знаки производной:

Ответ: функция убывает на интервале и возрастает на интервале . В точке функция достигает минимума:

Пример 4: Решение:

1) Функция терпит бесконечный разрыв в точке .
2) Найдём критические точки:

, – критические точки.
3) Методом интервалов определим знаки производной:

В точке функция достигает минимума: .
В точке экстремум отсутствует.

Ответ: в точке функция достигает минимума:
Примечание: обратите внимание, что информацию об интервалах монотонности раскрывать не обязательно, так как по условию требовалось найти только экстремумы функции

Пример 5: Решение:

1) Функция определена и непрерывна на всей числовой прямой кроме точки .

2) Найдём критические точки:

Примечание: в данном случае перед дифференцированием выгодно почленно разделить числитель на знаменатель
– критическая точка.
3) Определим знаки производной:

Ответ: функция возрастает на и убывает на . В точке она достигает максимума:

Пример 7: Решение:

Область определения: .
Найдём критические точки:

– критическая точка.
Определим знаки производной:

Ответ: функция убывает на интервале и возрастает на интервале В точке функция достигает минимума:

Автор: Емелин Александр

Высшая математика для заочников и не только >>>

(Переход на главную страницу)

Как можно отблагодарить автора?


 


Выпуклость, вогнутость и точки перегиба графика

Локомотив исследования функции методами дифференциального исчисления неумолимо приближает нас к конечной станции, и после изучения непрерывности, области определения, интервалов знакопостоянства, асимптот, интервалов монотонности и экстремумов функции осталось рассмотреть выпуклость, вогнутость и перегибы графика. Начнём с так полюбившихся посетителям сайта физических упражнений. Пожалуйста, встаньте и наклонитесь вперёд либо назад. Это выпуклость. Теперь вытяните руки перед собой ладонями вверх и представьте, что держите на груди большое бревно… …ну, если не нравится бревно, пусть будет ещё что/кто-нибудь =) Это вогнутость. В ряде источников встречаются синонимичные термины выпуклость вверх и выпуклость вниз, но я сторонник коротких названий.

Формальное определение выпуклости и вогнутости графика достаточно труднО для чайника, поэтому ограничимся геометрической интерпретацией понятия на конкретных примерах. Рассмотрим график функции , которая непрерывна на всей числовой прямой:

Его легко построить с помощью геометрических преобразований, и, наверное, многие читатели в курсе, как он получен из кубической параболы.

Назовём хордой отрезок, соединяющий две различные точки графика.

График функции является выпуклым на некотором интервале, если он расположен не ниже любой хорды данного интервала. Подопытная линия выпукла на , и, очевидно, что здесь любая часть графика расположена НАД своей хордой. Иллюстрируя определение, я провёл три чёрных отрезка.

График функции являются вогнутым на интервале, если он расположен не выше любой хорды этого интервала. В рассматриваемом примере пациент вогнут на промежутке . Пара коричневых отрезков убедительно демонстрирует, что тут и любой кусок графика расположен ПОД своей хордой.

Точка графика, в которой он меняет выпуклость на вогнутость или вогнутость на выпуклость, называется точкой перегиба. У нас она в единственном экземпляре (первый случай), причём, на практике под точкой перегиба можно подразумевать как зелёную точку , принадлежащую самой линии, так и «иксовое» значение .

ВАЖНО! Перегибы графика следует изображать аккуратно и очень плавно. Недопустимы всевозможные «неровности» и «шероховатости». Дело за небольшой тренировкой.

Второй подход к определению выпуклости/вогнутости в теории даётся через касательные:

Выпуклый на интервале график расположен не выше касательной, проведённой к нему в произвольной точке данного интервала. Вогнутый же на интервале график – не ниже любой касательной на этом интервале.

Гипербола вогнута на интервале и выпукла на :

При переходе через начало координат вогнутость меняется на выпуклость, однако точку НЕ СЧИТАЮТ точкой перегиба, так как функция не определена в ней.

Более строгие утверждения и теоремы по теме можно найти в учебнике, а мы переходим к насыщенной практической части:

Как найти интервалы выпуклости, интервалы вогнутости
и точки перегиба графика?

Материал прост, трафаретен и структурно повторяет исследование функции на экстремум.

Выпуклость/вогнутость графика характеризуетвторая производнаяфункции.

Пусть функция дважды дифференцируема на некотором интервале. Тогда:

– если вторая производная на интервале, то график функции является выпуклым на данном интервале;

– если вторая производная на интервале, то график функции является вогнутым на данном интервале.

На счёт знаков второй производной по просторам учебных заведений гуляет доисторическая ассоциация: «–» показывает, что «в график функции нельзя налить воду» (выпуклость),
а «+» – «даёт такую возможность» (вогнутость).


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: