Ясно, что производная
функции y =f (x) есть также функция от x: 
Если функция f ' (x) дифференцируема, то её производная обозначается символом y'' =f '' (x) и называется второй производной функции f(x) или производной функции f(x) второго порядка. Пользуясь обозначением
можем написать 
Очень удобно пользоваться также обозначением
, указывающим, что функция y=f(x) была продифференцирована по x два раза.
Производная второй производной, т.е. функции y''=f '' (x), называется третьей производной функции y=f(x) или производной функции f(x) третьего порядка и обозначается символами
.
Вообще n -я производная или производная n -го порядка функции y=f(x) обозначается символами 
Дифференцируя производную первого порядка, можно получить производную второго порядка, а, дифференцируя полученную функцию, получаем производную третьего порядка и т.д. Тогда возникает вопрос: сколько производных высших порядков можно получить в случае произвольной функции.
Например:
1)
;
;
;...;
;
.
Разные функции ведут себя по-разному при многократном дифференцировании. Одни имеют конечное количество производных высших порядков, другие – переходят сами в себя, а третьи, хотя и дифференцируемы бесконечное количество раз, но порождают новые функции, отличные от исходной.
Однако все сформулированные теоремы о производных первых порядков выполняются для производных высших порядков.






