Правило Киргоффа расчёта разветвлённых электр.цепей

Рассмотрим электр. цепь.

Узлом называется точка в которой сходятся 3 и более проводника.

1 правило киргоффа-

=0

ток входящий в узел +

ток выходящий - -

узел A: I1-I2-I=0 (1)

узел B:-I1-I2+I=0 (2)

2 правило:

=

Алгебраическая сумма произведений токов на сопротивления соответствующих участков в цепи равеая алгебраической сумме ЭДС на рассматриваемом контуре.При этом выбирают определённое направление обхода контура.если направление тока совпадает с направлением обхода контура то его считают положительным.

ЭДС считают + если при выбранном направлении ток проходит от – к +

При этом число независимых уравнений получается меньше чем общее число контуров…

r 1 1R1:

I1r1+IR= 1 (3)

Контур 1 r 1 2 r 2:I1r1-I2r2= 1- 2 (4)

Контур R 2 r 2:I2 r2+IR= 2 (5)

(4)+(5) 3

(3) (4) позволяют найти токи I1 I2 I

20. Закон Ома в классической электронной теории

Основные положения классической электронной теории Mе:

1) в Mе имеющих поликристаллическую структуру имеются свободные электроны: электроны положительности, электронный газ;

2) электроны участвуют в упорядоченном и хаотическом движениях. Упорядоченные движения описываются механикой Ньютона:

F=ma

3) хаотическое движение электрона описывается моделью идеального газа, подчиняющегося классической статистике Максвелла-Больцмана.

4) между кристаллической решеткой Ме и электронами проводимости устанавливается тепловое равновесие.

Получим дифференциальную форму закона Ома из электронной связи:

плотность j связана с концентрацией электронов n, зарядом e, скоростью упорядоченного движения <v> соотношением:

j=en<v>

I=q/t=enV/t=enSl/t=enSv

I/S=env

j=en<v>

Пусть электрон при соударении с узлом кристаллической решетки полностью передает всю энергию решетке и начинает движение с vo=0

Под действием электрического поля с напряженностью E на электрон будет действовать сила:

F=eE

Тогда электрон приобретает ускорение:

a=F/m=eE/m

max скорость электрона в конце свободного пробега будет равна:

vmax=a<τ>

<τ> - среднее время свободного пробега

vmax=eE/m<τ>

Т.к. движение электрона равноускоренное, то скорость электрона равна:

Среднее время свободного пробега <τ> равно отношению средней длины свободного пробега <l> к средней скорости хаотического движения электронов <u>

<τ> =<l>/<u>

<v>=eE<l>/2m<u>

В этом случае мы пренебрегаем скоростью упорядоченного движения электронов в сравнении со скоростью хаотического, теплового движения электронов: <u> >> <v>

Таким образом получаем:

j=e·n·e·E<l>/2m<u>=δE

j= δE δ=e2n<l>/2m<u>

Если бы электроны не сталкивались с узлами решетки, то средняя длина свободного пробега l=∞ и электропроводность δ=∞ и не было бы электрического сопротивления.

Тогда электрическое сопротивление Ме в классической электронной теории вызвано столкновением свободных электронов с ионами решетки.

По классической теории удельное сопротивление ρ=1/δ пропорционально средней скорости теплового движения <u>

<u>=√(8kT/2m)~√T

из опыта вытекает, что ρ=ρо(1+αT)

Классическая электронная теория расходится с опытом потому, что:

1) движение электронов в Ме описывается не II законом Ньютона, а уровнением квантовой механики Шредингера;

2) поведение эл. газа подчиняется не классической теории Максвелла-Больцмана, а Ферми- Дирака;

3) при низких температурах взаимодействие между электронами доминирует над взаимодействием между электронами и решеткой.

В квантовой механике электроны проявляют волновые свойства и тогда сопротивление Ме обусловлено рассеиваньем электронных волн на квантах колебаний узлов кристаллической решетки – фононах.

21. Сила Ампера. Вектор магнитной индукции

Опытным путем было установлено, что движущиеся электрические заряды, т. е. токи создают магнитные поля.

Магнитное поле проявляется под действием сил магнитного взаимодействия.

Магнитное поле в отличие от электрического действует только на движущиеся заряды, на покоящиеся заряды не действует.

(монополь – магнитный заряд)

Способность магнитного поля вызывать механическую силу в каждой точке поля, действующей на элемент тока Id(вектор)l характеризуется магнитной индукцией (вектор) B.

Элемент тока Id(вектор)l есть произведение силы тока I на бесконечно малый отрезок проводника d(вектор)l, направленный по току. d(вектор)l играет роль пробного заряда в электростатике.

Ампер экспериментально установил, что сила d(вектор)F действующая на элемент тока Id(вектор)l с индукцией (вектор) B равна:

d(вектор)F=I[d(вектор)l,(вектор)B] – закон Ампера (сила Ампера)

Если проводник прямолинейный и магнитное поле однородное (одинаковое в каждой точке), интегрируя последнее выражение, получаем:

(вектор)F= I[(вектор)l,(вектор)B]

Направление силы Ампера (вектор)F определяется по правилу векторного произведения.

Сила (вектор)F перпендикулярна плоскости, в которой лежат векторы l и B и направление силы (вектор)F определяется правилом правого винта:

если рукоятка правого винта вращается от первого вектора l ко второму вектору B на кратчайший угол, то поступательное движение винта указывает направление силы (вектор)F.

F=IlBsinφ=IlBsin((вектор)l^(вектор)B)

Сила Ампера нецентральная, т. е. зависит от ориентации проводника с током в магнитном поле.

Из закона Ампера обычно определяют магнитную индукцию (вектор) B.

Пусть проводник прямолинейный и перпендикулярный однородному магнитному полю (вектор) B.

F=IlB B=F/Il

Магнитная индукция (вектор) B – силовая, векторная характеристика магнитного поля, численно равная силе, действующей со стороны однородного магнитного поля на единицу длины проводника, по которому течет ток =1А и расположение проводника перпендикулярно направлению магнитного поля.

B=F I=1, l=1, l перпендикулярна B.

Единицей измерения магнитной индукции в системе СИ является Тесла (Тл).

1 Тесла – магнитная индукция такого однородного магнитного поля, которое действует с силой 1Н на каждый метр длины проводника с током 1А и расположенное перпендикулярно магнитному полю.

1Тл=1Н/(1А*1м)

Из опытов вытекает, что для магнитных полей справедлив принцип суперпозиции

(вектор)B=Σ(вектор)Bi

Поле (вектор) B, порожденное несколькими движущими зарядами или токами, равно векторной сумме полей (вектор)Bi, порожденных каждым зарядом или током в отдельности.

Магнитное поле, как и электрическое, изображается магнитными силовыми линиями – линиями (вектор) B.

Линии магнитной индукции (вектор) B – это линии, касательные к которым в каждой точке совпадают с направлением вектора B.

Линии (вектор) B всегда замкнуты, что указывает на вихревой характер магнитного поля, на отсутствие магнитных зарядов, на которых могли бы начинаться и заканчиваться силовые линии.

По густоте силовых линий судят о величине магнитного поля; там где силовые линии редкие – магнитное поле слабое.

Линии индукции прямолинейного проводника с током представляют собой концентрические окружности, центры которых лежат на оси тока.

При поступательном движении правого винта направление вращения рукоятки винта указывает направление силовых линий.



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: