Дифференциал функции в точке и его геометрический смысл

Дифференциалом функции в точке называют главную линейную часть приращения функции (строго говоря, его следовало обозначить или ). На чертеже дифференциал в точке равен длине отрезка .

Давайте снова возьмём в руки линейку и приложим её ребром к монитору на прямую . Двигая линейку влево к точке , уменьшаем приращение . Впрочем, и сам выполню несколько засечек:

По рисунку хорошо видно, что с уменьшением (а значит, и уменьшением – малиновых линий) отрезок занимает всё меньшую и меньшую часть приращения, а наш дифференциал – всю бОльшую и бОльшую его часть, именно поэтому его и называют главной частью приращения . Настолько главной, что при бесконечно малом дифференциал стремится к полному приращению функции: (соответственно отрезок будет бесконечно малым).

Нетрудно вывести формулу для приближенных вычислений с помощью дифференциала. Рассмотрим прямоугольный треугольник и тангенс угла наклона касательной . Обозначив дифференциал в рассматриваемой точке корректнее через , и учитывая, что , получаем:

То есть идея формулы приближенных вычислений состоит в том, чтобы точное значение функции (смотрим на ось ординат основного чертёжа) заменить суммой и отрезка . К слову, отрезок на главном чертеже существенно «не достаёт» до полного приращения , и это не случайность. В демонстрационной иллюстрации я выбрал большое значении , чтобы всё было видно. На практике же, чем приращение меньше – тем дифференциал лучше «дотянется» до полного приращения функции (см. маленький рисунок), и тем точнее сработает формула .

Провернём ещё один неожиданный фокус с полученным равенством . Предельно малое значение часто обозначают через , поэтому формула принимает вид . Скинем в знаменатель противоположной части:


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: