double arrow

Лампа накаливания

Лампа накаливания (ЛН) — электрический источник света, светящимся телом которого служит так называемое тело накала (ТН, проводник, нагреваемый протеканием электрического тока до высокой температуры). В качестве материала для изготовления ТН в настоящее время применяется практически исключительно вольфрам и сплавы на его основе. В конце XIX - первой половине XX в. ТН изготавливалось из более доступного и простого в обработке материала – углеродного волокна. (Приложение 2. Устройство лампы накаливания).

Принцип действия. В лампе накаливания используется эффект нагревания проводника (нити накаливания) при протекании через него электрического тока (тепловое действие тока). Температура вольфрамовой нити накала резко возрастает после включения тока. Нить излучает электромагнитное тепловое излучение в соответствии с законом Планка. Функция Планка имеет максимум, положение которого на шкале длин волн зависит от температуры. Этот максимум сдвигается с повышением температуры в сторону меньших длин волн (закон смещения Вина). Для получения видимого излучения необходимо, чтобы температура была порядка нескольких тысяч градусов, в идеале 5770 K (температура поверхности Солнца). Чем меньше температура, тем меньше доля видимого света и тем более красным кажется излучение.

Часть потребляемой электрической энергии лампа накаливания преобразует в излучение, часть уходит в результате процессов теплопроводности и конвекции. Только малая доля излучения лежит в области видимого света, основная доля приходится на инфракрасное излучение. Для повышения КПД лампы и получения максимально «белого» света необходимо повышать температуру нити накала, которая в свою очередь ограничена свойствами материала нити — температурой плавления. Идеальная температура в 5770 К недостижима, т. к. при такой температуре любой известный материал плавится, разрушается и перестаёт проводить электрический ток.

В обычном воздухе при таких температурах вольфрам мгновенно превратился бы в оксид. По этой причине ТН помещено в колбу, из которой в процессе изготовления ЛН откачиваются атмосферные газы. Наиболее опасными для ЛН являются кислород и водяные пары, в атмосфере которых происходит быстрое окисление ТН. Первые ЛН изготавливали вакуумными; в настоящее время только лампы малой мощности (для ЛОН - до 25 Вт) изготавливают в вакуумированной колбе. Колбы более мощных ЛН наполняют газом (азотом, аргоном или криптоном). Повышенное давление в колбе газополных ламп резко уменьшает скорость разрушения ТН из-за распыления. Колбы газополных ЛН не так быстро покрываются тёмным налётом распылённого материала ТН, а температуру последнего можно увеличить по сравнению с вакуумными ЛН. Последнее позволяет повысить КПД и несколько изменить спектр излучения.

КПД и долговечность. Почти вся подаваемая в лампу энергия превращается в излучение теплопроводности и конвекции малы. Для человеческого глаза, однако, доступен только малый диапазон длин волн этого излучения. Основная часть излучения лежит в невидимом инфракрасном диапазоне и воспринимается в виде тепла. Коэффициент полезного действия ламп накаливания достигает при температуре около 3400 K своего максимального значения 15 %. При практически достижимых температурах в 2700 K (обычная лампа на 60 Вт) КПД составляет 5%.

С возрастанием температуры КПД лампы накаливания возрастает, но при этом существенно снижается её долговечность. При температуре нити 2700 K время жизни лампы составляет примерно 1000 часов, при 3400 K всего лишь несколько часов. Как показано на рисунке справа, при увеличении напряжения на 20 %, яркость возрастает в два раза. Одновременно с этим время жизни уменьшается на 95%.

Ограниченность времени жизни лампы накаливания обусловлена в меньшей степени испарением материала нити во время работы, и в большей степени возникающими в нити неоднородностями. Неравномерное испарение материала нити приводит к возникновению истончённых участков с повышенным электрическим сопротивлением, что в свою очередь ведёт к ещё большему нагреву и испарению материала в таких местах. Когда одно из этих сужений истончается настолько, что материал нити в этом месте плавится или полностью испаряется, ток прерывается и лампа выходит из строя.

Преимущественная часть износа нити накала происходит при резкой подаче напряжения на лампу, поэтому значительно увеличить срок её службы можно используя разного рода плавные пускатели. Вольфрамовая нить накаливания имеет в холодном состоянии удельное сопротивление, которое всего в 2 раза выше, чем сопротивление алюминия. При перегорании лампы часто бывает, что сгорают медные проводки, соединяющие контакты цоколя с держателями спирали. Так, обычная лампа на 60 Вт в момент включения потребляет свыше 700 Вт, а 100-ваттная — более киловатта. По мере прогрева спирали её сопротивление возрастает, а мощность падает до номинальной. (Приложение 3. Светоотдача и КПД).

Для сглаживания пиковой мощности могут использоваться терморезисторы с сильно падающим сопротивлением по мере прогрева, реактивный балласт в виде ёмкости или индуктивности. Напряжение на лампе растет по мере прогрева спирали и может использоваться для шунтирования балласта автоматикой. Без отключения балласта лампа может потерять от 5 до 20 % мощности, что тоже может быть выгодно для увеличения ресурса.

Преимущества и недостатки ламп накаливания.

1. Преимущества:

- малая стоимость;

- небольшие размеры;

- ненужность пускорегулирующей аппаратуры;

- при включении они зажигаются почти мгновенно;

- отсутствие токсичных компонентов и как следствие отсутствие необходимости в инфраструктуре по сбору и утилизации;

- возможность работы как на постоянном (любой полярности), так и на переменном токе;

- возможность изготовления ламп на самое разное напряжение (от долей вольта до сотен вольт);

- отсутствие мерцания и гудения при работе на переменном токе;

- непрерывный спектр излучения;

- устойчивость к электромагнитному импульсу;

- возможность использования регуляторов яркости;

- нормальная работа при низких температурах окружающей среды.

2. Недостатки:

- низкая световая отдача;

- относительно малый срок службы;

- резкая зависимость световой отдачи и срока службы от напряжения;

- цветовая температура лежит только в пределах 2300 – 2900 к, что придает свету желтоватый оттенок;

- лампы накаливания представляют пожарную опасность. Через 30 минут после включения ламп накаливания температура наружной поверхности достигает в зависимости от мощности следующих величин: 40 Вт — 145 °C, 75 Вт — 250 °C, 100 Вт — 290 °C, 200 Вт — 330 °C. При соприкосновении ламп с текстильными материалами их колба нагревается еще сильнее. Солома, касающаяся поверхности лампы мощностью 60 Вт, вспыхивает примерно через 67 минут.

Утилизация.

Отслужившие лампы накаливания не содержат вредных для окружающей среды веществ и могут утилизироваться как обычные бытовые отходы. Единственным ограничением является запрет на их переработку вместе с изделиями из стекла.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



Сейчас читают про: