Интерферометры

ИНТЕРФЕРОМЕТР - прибор, основанный на явлении интерференции волн.

1. Звездный интерферометр Майкельсона

Устройство звездного интерферометра Майкельсона показано на рисунке. Лучи света, пришедшие от удаленной звезды, отражаются от зеркал, разнесенных на достаточно большое расстояние D, затем от двух других зеркал и собираются линзой на экране. Разнесенные на расстояние D зеркала можно рассматривать как точечные источники, расстояние между которыми и равно D.

На экране будут наблюдаться максимумы на расстояниях друг от друга.

Если наблюдаются две близкие звезды, лучи света от которых приходят под малым углом j, то на экране будут наблюдаться две интерференционные картины, сдвинутые по отношению друг к другу на расстояние . Измерение углового расстояния j между звездами производится следующим образом.

При изменении величины D изменяется . Угловое расстояние между звездами:

; .

2. Интерферометр Линника

Основу интерферометра составляют две стеклянные пластины p1 и p2 и два зеркала, одним из которых служит исследуемая поверхность.

Нижняя поверхность первой пластины представляет собой полупрозрачное зеркало, на котором происходит разделение лучей: часть света (луч 1) отражается вверх, отражается от исследуемой поверхности и после отражения от нижнего зеркала З” направляется в окуляр (на рисунке не показан), через который и наблюдается интерференционная картина.

После прохождения пластины p1 луч 2 направляется к зеркалу З, отражается от него, затем от полупрозрачного зеркала и вместе с лучем 1 направляется к наблюдателю.

Луч 1 после отражения от полупрозрачного зеркала и на обратном пути дважды проходит через пластину p1, “набирая” тем самым некоторую “лишнюю” разность хода. Для ее компенсации служит пластина p2, изготовленная из того же материала, что и первая. Разумеется, эту “лишнюю разность хода” можно было бы легко скомпенсировать простым перемещением зеркала, если бы не было дисперсии, зависимости коэффициента преломления от длины волны n(l). Применение компенсирующей пластины p1 позволяет осуществить такую компенсацию сразу для всех длин волн.

При отражении от идеально плоских поверхностей волны остаются плоскими, и фронты волн 1 и 2 составляют между собой угол 2a,если угол между исследуемой поверхностью и изображением зеркала З’ равен a. Если исследуемая поверхность обработана некачественно, волна 1 уже не будет плоской, интерференционная картина исказится.

3. Интерферометр Рэлея

Схема получения интерференционной картины в этом случае не сильно отличается от классического опыта Юнга. Источником света служит освещаемая достаточно удаленным источником щель S, от которой распространяется цилиндрическая волна. С помощью линзы волна преобразуется в плоскую волну: лучи 1 и 2 становятся параллельными. Они проходят через кюветы, длины которых l могут быть достаточно велики.

Если показатели преломления газов в кюветах одинаковы, интерференционная полоса (максимум) с нулевой разностью хода помещается в центре экрана при x=0. Заметим - выше ее (на рисунке) расположатся линии (максимумы), для которых оптическая длина пути нижнего луча больше.

Если верхняя кювета заполняется газом с несколько большим показателем преломления, оптическая длина пути луча 1 на протяжении кюветы станет больше и линия с нулевой разностью хода (“центральная”) сместится вверх.

Ширина интерференционной полосы определяется выражением

.

Реальный интерферометр Рэлея устроен несколько иначе: за диафрагмой устанавливается линза, в фокальной плоскости которой и наблюдается интерференционные полосы (с помощью окуляра с достаточным увеличением).

Два точечных источника представляют собой частный случай периодического расположения источников.

При q=0, естественно, будет наблюдаться максимум. Следующий максимум будет при значении q, которое определяется условием

;

и ширина полосы на экране

.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: