Изучение УФ спектров

Электронные уровни наглядно и с высокой точностью описываются в терминах теории молекулярных орбиталей. Исходя из деталей взаимодействия и данных о потенциалах ионизации можно расположить электроны различных молекулярных орбиталей в следующий ряд по их энергии: s<p<n. s - орбитали занимают связывающие электроны всех типов органических молекул, p- орбитали заняты электронами двойных и тройных связей, n - орбитали заполняют электроны несвязывающих электронов гетероатомов, например, кислорода или азота. Возбуждение переводит электроны на более высокие разрыхляющие орбитали, энергия которых растет p*<s*. Таким образом, в электронных спектрах могут проявляться следующие переходы: n®p* (в карбонильных соединениях); p®p* (в алкенах, алкинах, карбонильных и азосоединениях); s®p* (в карбонильных соединениях); s®s* (в алканах).

Наличие и интенсивность проявления линии в спектре определяется вероятностью или разрешенностью соответствующего перехода. Для описания спектров используют следующие правила:

а) поглощение одного кванта сопровождается возбуждением одного электрона;

б) суммарное спиновое число при электронном переходе должно остаться неизменным.

Есть правила, учитывающие симметрию молекулы и симметрии основного и возбужденного состояний, но они не столь всеобщи. Во всех устойчивых молекулах электроны всегда спарены, возбуждение переносит электрон на более высокий по энергии уровень, но спин его остается противоположным спину электрона оставшегося. Системы, содержащие только спаренные электроны, называют синглетными; системы, в которых присутствуют неспаренные электроны - триплетными. Переходы между синглетными или триплетными уровнями разрешены и проявления в спектрах интенсивны (триплетные уровни заселены слабо и соответствующие линии слабы только поэтому), переходы между синглетным и триплетным уровнями, наоборот, запрещены и линии, им соответствующие, малоинтенсивны.

В молекулах можно выделить структурные фрагменты, обуславливающие избирательное поглощение излучение и называемые хромофорами и фрагменты, вступающие в электронное взаимодействие с хромофорами, изменяющие таким образом интенсивность поглощения и/или положение максимума и называемые ауксохромами. Выделяют следующие типы влияния ауксохрома:

а) батохромный сдвиг - смещение полосы поглощения в сторону более длинных волн (меньших частот) или красный сдвиг;

б) гипсохромный сдвиг - смещение в сторону более коротких волн (больших частот) или синий сдвиг;

в) гиперхромный эффект - увеличение интенсивности поглощения;

г) гипохромный эффект - понижение интенсивности поглощения

УФ спектр органического вещества характеристичен, так как поглощение определяется только собственно хромофором и его ближайшим окружением, т. е. один и тот же хромофор проявляется практически одинаково как в относительно простых, так и в самых сложных молекулах. В зависимости от непосредственного окружения одной и той же хромофорной группировки положение максимума поглощения в УФ спектрах различных соединений может несколько изменяться. Сдвиг максимума в сторону более длинных волн принято называть батохромным сдвигом, а сдвиг в сторону более коротких волн - гипсохромным. Замена растворителя в отдельных случаях может вызвать некоторые изменения как в положении полос (на 2- 10 нм), так и в их интенсивности (на 10-20%).

Как правило, такая замена влияет на спектры полярных веществ и практически не сказывается на УФ спектрах неполярных соединений. Наиболее сильные изменения в спектрах обусловлены химическим взаимодействием вещества с растворителем (в частности, образованием водородной связи), а также изменением степени диссоциации или соотношения таутомерных форм вещества. Во всех таких случаях следует проверить, выполняется ли для данного раствора закон Бугера-Ламберта-Бера.

Таким образом, УФ спектроскопия позволяет определить в исследуемых соединениях группировки-хромофоры и дает прекрасную возможность для количественного анализа веществ, содержащих такие группировки. Как структурно-аналитический метод УФ спектроскопия значительно менее информативна по сравнению с другими методами и носит в основном эмпирический характер, поскольку зависимость между характером поглощения и структурой молекулы не имеет строгого физико-математического обоснования, что, однако, не мешает широкому использованию метода.

Отсутствие в УФ спектре исследуемого вещества максимума поглощения в области 200-800 нм служит надежным доказательством того, что в этом веществе не содержатся сопряженные диеновые или полиеновые системы, ароматические ядра и карбонильные группы. Этот признак часто оказывается полезным при установлении структуры соединения, например, позволяет легко различить изомеры с сопряженными и изолированными двойными связями, как в случае приводимой ниже пары:

УФ спектры основных гетероциклических соединений представлены ниже:

  lмакс (в гексане)
фуран 200 (e 10000) 252 (e 1)
тиофен   235 (e 4500)
пиррол 210 (e 15000) 350 (e 300)
пиридин 195 (e 7500) 250 (e 2000)

Таким образом, достаточно очевидны как преимущества метода (доказательство наличия в исследуемом веществе группировок-хромофоров сопряженной диеновой, полиеновой и ароматической систем, а также карбонильной группы или их отсутствия; в простейших случаях возможность определения типа хромофора, длины цепи сопряжения, числа алкильных групп при хромофоре; количественный анализ, включая регистрацию изменения концентраций растворов во времени), так и ограничения метода (ограниченность рамок применения, так как многие типы органических соединений не имеют максимума поглощения в исследуемой области; сравнительно малые возможности при решении структурно-аналитических задач; в ряде случаев сильное влияние природы растворителя на характер спектра и возможность отклонений от закона Бугера- Ламберта-Бера; фотохимическая изомеризация веществ в процессе работы (например, цис-транс- изомеризация в диеновых и полиеновых системах).


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: