Матрицы прямых и полных материальных затрат

. Статистические межотраслевые модели используются для разработки планов выпуска и потребления продукции и основываются на соотношениях межотраслевого баланса.

При построении модели делают следующие предположения:

1) все продукты, производимые одной отраслью, однородны и рассматриваются как единое целое, т.е. фактически предполагается, что каждая отрасль производит один продукт;

2) в каждой отрасли имеется единственная технология производства;

3) нормы производственных затрат не зависят от объёма выпускаемой продукции;

4) не допускается замещение одного сырья другим.

В действительности эти предположения, конечно, не выполняются. Даже на отдельном предприятии обычно выпускаются различные виды продукции, используются различные технологии, удельные затраты зависят от объема выпуска и в тех или иных пределах допускается замена одного сырья другим. Следовательно, эти предположения тем более неверны для отрасли. Однако такие модели получили широкое распространение и, как показала практика, они вполне адекватны и применимы для составления планов выпуска продукции.

При этих предположениях величина xij может быть представлена следующим образом:

(3.3)

Величина aij называется коэффициентом прямых материальных затрат. Она показывает, какое количество продукции i-й отрасли идет на производство единицы продукции j-й отрасли. Коэффициенты aij считаются в межотраслевой модели постоянными.

Подставляя выражение (3.3) в формулу (3.1), получим:

 

Это соотношение можно записать в матричном виде:

X = AX + Y, (3.4)

где X = (X1, X2,..., Xn) - вектор валовых выпуков;

Y = (y1, y2,..., yn) - вектор конечного продукта;

A = - матрица коэффициентов прямых материальных затрат.

Коэффициенты прямых материальных затрат являются основными параметрами статической межотрслевой модели. Их значения могут быть получены двумя путями:

1) статистически. Коэффициенты определяются на основе анализа отчётных балансов за прошлые годы. Их неизменность во времени определяется подходящим выбором отраслей;

2) нормативно. Предполагается, что отрасль состоит из отдельных производств, для которых уже разработаны нормативы затрат; на их основе рассчитываются среднеотраслевые коэффициенты.

Выражение (3.4) принято называть балансом распределения продукции. Его можно использовать для анализа и планирования структуры экономики. Если известны коэффициенты прямых материальных затрат, то, задав конечный продукт по каждой отрасли, можно определить необходимые валовые выпуски отраслей. В этом заложена основная идея использования матричных моделей для планирования производства.

Преобразуем выражение (3.4):

X - AX = Y,  
X (E - A) = Y,  
X = (E - A)-1Y, (3.5)

где E - единичная матрица.

До начала планирования следует выяснить, существует ли матрица, обратная матрице (E-A), и не будут ли получены отрицательные значения выпуска по отраслям.

Установим некоторые свойства коэффициентов прямых материальных затрат.

1. Неотрицательность, т.е. aij ≥ 0, Это утверждение следует из неотрицательности величин xij и положительности валовых выпусков Xj.

2. Сумма элементов матрицы A по любому из столбцов меньше единицы, т.е.

Доказать это утверждение несложно.

Для любой отрасли условно чистая продукция есть величина положительная, поскольку включает в себя заработную плату, амортизацию, прибыль и т.д., т.е. Vj>0. Поэтому, используя соотношение (3.2), можно записать:

 

из соотношения (3.3):

 

откуда безусловно следует:

 

таким образом, утверждение доказано.

Можно показать, что при выполнении этих двух условий матрица B = (E - A)-1 существует и если ее элементы неотрицательны. Говорят, что в этом случае матрица прямых затрат А является продуктивной.

Перепишем формулу (3.5):

X = BY, (3.6)

Матрица В носит название матрицы полных материальных затрат, а ее элементы bij называют коэффициентами полных материальных затрат. Коэффициент bij показывает, каков должен быть валовый выпуск i-й отрасли для того, чтобы обеспечить выпуск единицы конечного продукта j-й отрасли.

Можно показать, что

B = E + A + A2 + A3 +... (3.7)

Умножим обе части на (E - A):

B(E - A) = (E + A + A2 + A3 +...)(E - A),  
B(E - A) = E + A + A2 + A3 +..- A - A2 - A3 -...,  
B(E - A) = E,  
B = E / (E - A),  
B = (E - A)-1.  

Доказано.

Из сотношения (3.7) следует bij ≥ aij, Таким образом, коэффициент полных материальных затрат bij, описывающий потребность в выпуске продукции i-й отрасли в расчете на единицу конечного продукта j-й отрасли, не меньше коэффициента прямых материальных затрат aij, рассчтываемого на единицу валового выпуска.

Кроме того, из соотношения (3.7) для диагональных элементов матрицы B следует:

bii ≥ 1,  


16. Производственные функции выпуска продукции. Средние и предельные характеристики, нормы замещения ресурсов. Основные виды производственных функций. Функция Коб ба-Дугласа.

В реальной жизни в пределах используемой технологии предприниматель стремится найти наилучшее сочетание факторов производства, с тем чтобы достичь наибольшего выхода продукции. Отношение между любым набором факторов производства и максимально возможным объемом продукции, производимой из этого набора факторов, характеризует производственную функцию.

Производственная функция — технологическая зависимость между затратами ресурсов и выпуском продукции.

В микроэкономике используется большое количество самых разнообразных функций производства, но чаще всего — двухфакторные функции вида: , которые легче анализировать в силу их графического представления.

Среди двухфакторынх функций наибольшую известность получила функция Кобба-Дугласа, имеющая вид:

где:

§ — положительные константы

§ — количество используемых ресурсов (обычно рассматривают труд и капитал)

Производственная функция характеризует техническую зависимость между ресурсами и выпуском и описывает всю совокупность технологически эффективных способов. Каждый способ может быть описан своей производственной функцией.





Подборка статей по вашей теме: