double arrow

Равноускоренное прямолинейное движение


Автор:– Начнем обсуждение самого простого неравномерного движения – движения с постоянным ускорением. Такое движение называют равноускоренным.

Рис. 1.2.1

График зависимости V(t) для этого случая показан на рис.1.2.1. Промежуток времени Δt в формуле (1.4) можно брать любой. Отношение ΔV/Δt от этого не зависит. Тогда ΔV=аΔt. Применяя эту формулу к промежутку от tо = 0 до некоторого момента t, можно написать выражение для скорости:

V(t)=V0 + at. (1.5)

Здесь V0 – значение скорости при tо = 0. Если направления скорости и ускорения противоположны, то говорят о равнозамедленном движении (рис. 1.2.2).

Рис. 1.2.2

При равнозамедленном движении аналогично получаем

V(t) = V0 – at.

Разберём вывод формулы перемещения тела при равноускоренном движении. Заметим, что в этом случае перемещение и пройденный путь – одно и тоже число.

Рис.1.2.3

Рассмотрим малый промежуток времени Δt. Из определения средней скорости Vcp = ΔS/Δt можно найти пройденный путь ΔS = VcpΔt. На рисунке видно, что путь ΔS численно равен площади прямоугольника с шириной Δt и высотой Vcp. Если промежуток времени Δt выбрать достаточно малым, средняя скорость на интервале Δt совпадет с мгновенной скоростью в средней точке. ΔS ≈ VΔt. Это соотношение тем точнее, чем меньше Δt. Разбивая полное время движения на такие малые интервалы и учитывая, что полный путь S складывается из путей, пройденных за эти интервалы, можно убедиться, что на графике скорости он численно равен площади трапеции:

S= ½·(V0 + V)t,

подставляя (1.5), получим для равноускоренного движения:

S = V0t + (at2/2) (1.6)

Для равнозамедленного движения перемещение L вычисляется так:

L= V0t–(at2/2).

Разберем задачу 1.3.

Пусть график скорости имеет вид, изображенный на рис. 1.2.4. Нарисуйте качественно синхронные графики пути и ускорения от времени.

Студент: – Мне не приходилось встречаться с понятием «синхронные графики», я также не очень представляю, что значит «нарисовать качественно».

Автор: – Синхронные графики имеют одинаковые масштабы по оси абсцисс, на которой отложено время. Расположены графики один под другим. Удобны синхронные графики для сопоставления сразу нескольких параметров в один момент времени. В этой задаче мы будем изображать движение качественно, т. е. без учета конкретных числовых значений. Для нас вполне достаточно установить: убывает функция или возрастает, какой вид она имеет, есть ли у нее разрывы или изломы и т. д. Думаю, для начала нам следует рассуждать вместе.

Рис.1.2.4

Разделим все время движения на три промежутка ОВ, BD, DE. Скажите, какой характер носит движение на каждом из них и по какой формуле будем вычислять пройденный путь?

Студент: – На участке ОВ тело двигалось равноускоренно с нулевой начальной скоростью, поэтому формула для пути имеет вид:




S1(t) = at2/2.

Ускорение можно найти, разделив изменение скорости, т.е. длину АВ, на промежуток времени ОВ.

Автор: – Хорошо. Теперь рассмотрите другие временные участки – ВD и .

Студент:– На участке ВD тело движется равномерно со скоростью V0, приобретенной к концу участка ОВ. Формула пути – S = Vt. Ускорения нет.

Автор: – Следует уточнить, что равномерное движение началось не в начальный момент времени, а в какой-то t1. К этому времени тело уже прошло путь at12/2. Кроме того, за начало отсчета времени необходимо взять момент t1. Зависимость пути от времени имеет следующий вид:

S2(t) = at12/2 + V0(t– t1 ).

Учитывая это пояснение, напишите формулу для пути на участке DE.

Студент:– На последнем участке движение равнозамедленное. Буду рассуждать так. До момента времени t2 тело уже прошло расстояние S2 = at12/2 + V(t2– t1 ).

К нему надо добавить выражение для равнозамедленного случая, учитывая, что время отсчитывается от значения t2 получаем пройденный путь, за время t – t2:

S3=V0(t–t2)–[a1(t–t2)2]/2.

Предвижу вопрос о том, как найти ускорение a1. Оно равно СD/DE. В итоге получаем путь, пройденный за время t>t2

S (t)= at12/2+V0(t–t1)– [a1(t–t2)2]/2.

Автор: – Верно. Переходите к построению графиков.

Студент:– На первом участке имеем параболу с ветвями, направленными вверх. На втором – прямую, на последнем – тоже параболу, но с ветвями вниз.

Рис. 1.2.6

Автор:– Ваш рисунок имеет неточности. График пути не имеет изломов, т. е. параболы следует плавно сопрягать с прямой. Мы уже говорили, что скорость определяется тангенсом угла наклона касательной. По Вашему чертежу получается, что в момент t1 скорость имеет сразу два значения. Если строить касательную слева, то скорость будет численно равна tgα, а если подходить к точке справа, то скорость равна tgβ. Но в нашем случае скорость – непрерывная функция. Противоречие снимается, если график построить так.



Рис. 1.2.7

Есть еще одно полезное соотношение между S, a, V и V0. Будем предполагать, что движение происходит в одну сторону. В этом случае перемещение тела от начальной точки совпадает с пройденным путём. Используя (1.5), выразите время t и исключите его из равенства (1.6). Так Вы получите эту формулу.

Студент:V(t) = V0 + at , значит,

t = (V– V0 )/a,

S = V0t + at2/2 = V0(V– V0 )/a + a[(V– V0 )/a]2 = .

Окончательно имеем:

S= . (1.6а)

История.

Однажды во время обучения в Геттингене Нильс Бор плохо подготовился к коллоквиуму, и его выступление оказалось слабым. Бор, однако, не пал духом и в заключение с улыбкой сказал:

– Я выслушал здесь столько плохих выступлений, что прошу рассматривать моё как месть.

Заказать ✍️ написание учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Сейчас читают про: