Основные методы разделения и очистки белков

Изучение физико-химических свойств, химического состава и структуры возможно только при исследовании очищенного белкового препарата. Для выделения и фракционирования индивидуальных белков используются: высаливание, осаждение органическими растворителями, гельфильтрация, электрофорез, ионообменная хроматография, аффинная хроматография.

Высаливание белков основано на зависимости растворимости белка от свойств среды. В дистиллированной воде протеины растворяются хуже, чем в слабых растворах солей, так как низкие концентрации ионов поддерживают их гидратные оболочки. Но при высоких концентрациях соли молекулы белка теряют гидратные оболочки, агрегируют и образуется осадок. После удаления соли белки вновь переходят в раствор, сохраняя нативные свойства и конформацию.

Изменение растворимости при различных концентрациях соли и рН среды используется для выделения индивидуальных белков. Чаще всего для высаливания белков используют растворы сульфата аммония разной концентрации.

Осаждение белков из раствора без их денатурации осуществляют с помощью дегидрирующих агентов - органических растворителей (этанол, ацетон).

Гель-фильтрация основана на разделении белков по величине и форме молекулы. Разделение проводят в хроматографических колонках, заполненных гранулами пористого геля (сефадекса, агарозы), в буферном растворе с определенным значением рН. Гранулы геля проницаемы для белков благодаря внутренним каналам (порам) с определенным средним диаметром, размер которого зависит от типа геля (сефадекс G-25, G-200 и т.д.). Смесь белков вносят в колонку и затем вымывают (элюируют) буферным раствором с определенным значением рН. Крупные молекулы белка не проникают в поры геля и перемещаются с высокой скоростью вместе с растворителем. Мелкие молекулы низкомолекулярной примеси (соли) или другого белка удерживаются гранулами геля и вымываются из колонки медленнее (рис. 1.29). На выходе колонки раствор (элюат) собирают в виде отдельных фракций.

Рис. 1.29. Разделение белков методом гель-фильтрации

Электрофорез основан на свойстве заряженных молекул белка перемещаться в электрическом поле со скоростью, пропорциональной их суммарному заряду. Белки, имеющие при данном значении рН суммарный отрицательный заряд, двигаются к аноду, а положительный - к катоду. Электрофорез проводят на разных носителях: бумаге, крахмальном геле, полиакриламидном геле и др. Скорость перемещения зависит от заряда, массы и формы молекул белка. После завершения электрофореза зоны белков на носителе окрашивают специальными красителями (рис. 1.30, А).

Разрешающая способность электрофореза в геле выше, чем на бумаге, так при электрофорезе белков сыворотки крови на бумаге выделяют 5 фракций (альбумины, α1-, α2-, β-, γ-глобулины), а в полиакриламидном геле - до 18 фракций (рис. 1.30, Б).

Рис. 1.30. Электрофореграмма белков сыворотки крови здорового человека

А - электрофореграмма белков сыворотки крови на бумаге;

Б - количество белков плазмы разных фракций.

I - γ-глобулины; II - β-глобулины; III - а2-глобулины;

IV - а1-глобулины; V - альбумины

Ионообменная хроматография основана на разделении белков, отличающихся суммарным зарядом. Раствор белка с определенным значением рН пропускают через хроматографическую колонку, заполненную твердым пористым сорбентом, при этом часть белков задерживается в результате электростатического взаимодействия. В качестве сорбента используют ионообменные вещества: анионообменники (содержащие катионные группы) для выделения кислых белков; катионообменники (содержащие анионные группы) для выделения основных белков.

При пропускании белка через колонку прочность его связывания с ионообменником зависит от величины заряда, противоположного заряду сорбента. Адсорбированные на ионообменном сорбенте белки элюируют буферными растворами с различной концентрацией соли и рН, получая разные фракции белков.

Аффинная хроматография основана на специфичности связывания белка с лигандом, присоединенным к твердому носителю. В качестве лиганда используются субстраты ферментов, простетические группы холопротеинов, антигены и т.д. При пропускании через колонку смеси белков к лиганду присоединяется только комплементарный протеин (рис. 1.31, А), все остальные выходят вместе с раствором. Адсорбированный белок элюируется раствором с другим значением рН (рис. 1.31, Б). Этот метод высокоспецифичен и позволяет получать белковые препараты высокой степени очистки.

Выделение и очистка белка обычно проходят в несколько стадий с использованием различных методов. Последовательность стадий подбирается эмпирическим путем и может различаться для разных протеинов. Высокая степень очистки белков очень важна как при использовании их в качестве лекарственных препаратов (гормон инсулин и т.д.), так и при диагностике различных заболеваний по изменению белкового состава тканей, крови, слюны и др.

Набор белков в клетках различных органов взрослого человека индивидуален и поддерживается относительно постоянным на протяжении жизни. Специализированные ткани могут содержать специфические белки, например гемоглобин в эритроцитах, актин и миозин в мышцах, родопсин в сетчатке глаза, разные типы коллагена в костной и соединительной тканях. Некоторые белки содержатся во многих тканях, но в разных количествах. Отдельные изменения состава

Рис. 1.31. Разделение белков методом аффинной хроматографии

А - связывание выделяемого белка со специфическим лигандом, присоединенным к нейтральному носителю; Б - получение раствора индивидуального белка

белков тканей и крови возможны и связаны прежде всего с режимом питания, составом пищи, физической активностью человека.

При заболеваниях белковый состав крови и клеток тканей может существенно изменяться, часто развивается недостаточность какого-либо белка либо снижение его активности - протеинопатия. Поэтому определение выраженных изменений белкового состава крови и тканей используется для диагностики различных заболеваний в клинических исследованиях.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: