Врождённые нарушения обмена фолиевой кислоты

Мегалобластическая анемия, сочетающаяся с нарушением психического развития, может обнаруживаться у младенцев вследствие врождённого нарушения всасывания фолатов в тонком кишечнике. Хороший клинический эффект достигается парэнтеральным введением максимальных лечебных доз витамина.

Мегалобластическая анемия вследствие дефекта фолатредуктазы. В такой ситуации нарушается превращение фолиевой кислоты в её коферментную форму – 5-формил-ТГФК. Заболевание прогрессирует медленно, неврологические нарушения обычно отсутствуют, коррегируется повышенными дозами фолиевой кислоты.

Мегалобластическая анемия из-за недостаточности формиминотрансферазы – фермента, необходимого для образования 5-формимино-ТГФК из гистидина. Заболевание обнаруживается в течение первого года жизни ребёнка и характеризуется задержкой умственного и физического развития, аномальными изменениями электроэнцефалографии. Обнаруживается по аномально высокому содержанию фолатов в крови (задержка превращения их в активную фрму) и увеличения выведения метаболитов витамина при нагрузке гистидином.

Другие разновидности анемии затрагивают иные пути метаболизма фолатов, в частности, описана мегалобластическая анемия вследствие дефекта 5,10-метилен-ТГФК-редуктазы ( фермент восстанавливает 5,10-метилен-ТГФК в 5-метил-ТГФК), особую роль в заболевании мегалобластической анемией играет недостаточность витамина В12 (см. далее).

Гипервитаминоз не описан. Даже при приёме доз, в 20-40 раз превышающих физиологические, токсических эффектов не отмечалось (в клинических испытаниях больные атеросклерозом принимали до 80 мг/сутки витамина В9).

Оценка обеспеченности организма фолацином. Об обеспеченности организма фолиевой кислотой можно судить по содержанию её в крови (лучше – в плазме крови). Содержание фолацина в моче, как правило, не является достоверным критерием обеспеченности организма этим витамином. Быстрое удаление витамина из крови при внутривенном его введении может указывать на недостаточную потребность организма в этом витамине (активный «захват» тканями).

Нередко об обеспеченности организма витамином Вс судят по косвенным показателям: морфологическим изменениям крови и костного мозга, а также по уровню выведения некоторых продуктов обмена витамина с мочой (формиминоглутаминовой или уроканиновой кислот).

Суточная потребность. Пищевые источники. Витамина много в лиственных овощах, например, в шпинате. Он содержится в салате, капусте, томатах, землянике. Богаты им печень и мясо, яичный желток.

При скудном питании рекомендуемая доза составляет 150- 200 мкг фолиевой кислоты ежедневно, лечебная доза – до 2 мг в сутки.

Особое значение приобретает достаточная обеспеченность фолиевой кислотой в ранние сроки беременности: на 2-й неделе (начало развития головного мозга) даже кратковременный дефицит этого витамина может привести к появлению врождённых уродств, нарушению физического и психического развития новорождённого.

Однако дефицит фолата имеет другие недавно изученные биологические последствия, включая ненормально высокий уровень урацила в ДНК. Последнее, как указывалось выше, является следствием лимита биосинтеза тиминовых нуклеотидов. Этот феномен ведёт к хромосомным поломкам, обуславливающим в значительной степени дефект нервной трубки в период эмбриогенеза. Уже не вызывает сомнений, что появление таких врождённых пороков развития, как spina bifida и анэнцефалия, патогенетически связано с дефицитом фолата. Их предупреждение, как показывает мировой опыт, достигается назначением фолиевой кислоты на протяжении всего периода беременности в дозе не менее 400 мкг в сутки, особенно важно это делать в раннем сроке, когда нервная система плода развивается особенно быстро.

Витамин В12 (кобаламин), антианемический витамин

Химическое строение и свойства. Злокачественная анемия (болезнь Аддисон-Бирмера) оставалась смертельным заболеванием до 1926 г., когда впервые для её лечения применили сырую печень. Поиски содержащегося в печени антианемического фактора привели к успеху, и в 1955 г. Дороти Ходжкин расшифровала структуру этого фактора и его пространственную конфигурацию с помощью метода рентгеноструктурного анализа.

Структура витамина В12 отличается от строения всех других витаминов своей сложностью и наличием в его молекуле иона металла – кобальта. Кобальт связан кооординационной связью с 4 атомами азота, входящими в состав порфириноподобной структуры (называемой корриновым ядром), и с атомом азота 5,6-диметилбензимидазола. Кобальтсодержащее ядро молекулы представляет собой плоскостную структуру, с перпендикулярно расположенным к ней нуклеотидом. Последний, помимо 5,6-диметилбензимидазола, содержит рибозу и фосфорную кислоту (циановая группа, связанная с кобальтом, присутствует только в очищенных препаратах витамина, в клетке она замещается водой или гидроксильной группой). Из-за присутствия в молекуле витамина кобальта и амидного азота это соединение получило название «кобаламин».

Метаболизм. Содержащийся в пище витамин В12 в желудочном соке связывается с вырабатываемым обкладочными клетками слизистой желудка белком - гликопротеином, получившим название внутреннего фактора Касла. Одна молекула этого белка избирательно связывает одну молекулу витамина; далее в подвздошной кишке этот комплекс взаимодействует со специфическими рецепторами мембран энтероцитов и всасывается путём эндоцитоза

Затем витамин освобождается в кровь воротной вены. При пероральном назначении высоких доз цианкобаламина он может абсорбироваться в тонком кишечнике путём пассивной диффузии без участия внутреннего фактора, но это медленный процесс. При заболеваниях желудка, сопровождающихся нарушением синтеза внутреннего фактора, всасывания кобаламина не происходит.

Цианкобаламин, используемый в медицинской практике, в энтероцитах превращается в оксикобаламин, являющийся транспортной формой витамина. Транспорт оксикобаламина кровью осуществляется двумя специфическими белками: транскобаламином I (α-глобулин с молекулярной массой ̴120000) и транскобаламином II (β-глобулин с молекулярной массой 35000). Второй из этих белков в транспорте витамина играет главную роль, а транскобаламин I служит своеобразным циркулирующим депо витамина. В печени и почках оксикобаламин превращается в свои коферментные формы: метилкобаламин (метил-В12) и дезоксиаденозинкобаламин (д-аденозин-В12). Коферменты с током крови разносятся по всем тканям организма.

Выводится из организма витамин с мочой.

Биохимические функции. К настоящему времени известно ~ 15 различных В12-регулируемых реакций, но только две из них протекают в клетках млекопитающих: 1/. синтез метионина из гомоцистеина (явно не удовлетворяющий потребностям организма) и 2/. изомеризация D-метилмалонил-КоА в сукцинил-КоА. Рассмотрим эти реакции.

1. В первой реакции участвует метил-В12, являющийся коферментом метионинсинтазы (гомоцистеинметилтрансферазы ).. Фермент переносит метильную группу с 5-метил-ТГФК на гомоцистеин с образованием метионина:

ТГФК 5-метил-ТГФК

 
 


CH3-B12
SH S- CH3

| В12 |

CH2 CH2

| |

CH2 CH2

| |

CH – NH2 CH – NH2

| |

COOH метионинсинтаза COOH

Гомоцистеин Метионин

При уменьшении содержания в диете витамина В12 синтез метионина метионинсинтазой снижается, но поскольку при полноценном питании метионин поступает с пищей, метаболизм белков нарушается не сразу. Вместе с тем, падение активности метиоинсинтазы приводит к накоплению 5-метил-ТГФК (см. схему), который образуется при восстановлении 5,10-метилен-ТГФК, т.е. исчерпывается пул других коферментов ТГФК. Таким образом, даже при условии вполне достаточного общего уровня фолатов создаётся их функциональный дефицит – уменьшается содержание формил- и метилен-производных ТГФК. Как раз эти производные, а точнее приносимые ими одноуглеродные радикалы, необходимы для синтеза предшественников нуклеиновых кислот. Этот феномен получил название «секвестрация» пула ТГФК.

Описанная реакция служит примером тесной взаимосвязи межу двумя витаминами- фолиевой кислотой и кобаламином. Не удивительна поэтому и схожесть симптомов заболевания при дефиците какого-либо из них. При недостаточности витамина В9, а также при снижении активности метионинсинтазы – В12-зависимого фермента, функциональный пул ТГФК может быть легко исчерпан путём «секвестрации», что влечёт за собой избыточное накопление субстрата метионинсинтазной реакции – гомоцистеинаметионин. Таким образом, коферментная функция ТГФК в переносе метильной группы (ключевая реакция) зависит от доступности фолата, т.е. от адекватного его поступления в организм.

Отмечена прямая корреляция между показателями тромбоэмболических осложнений, смертностью от ишемической болезни сердца и уровнем гомоцис-теинемии у этих больных. Увеличенный уровень гомоцистеина в крови постулируется в настоящее время как независимый фактор риска развития ИБС и её тромбоэмболических осложнений. Роль гипергомоцистеинурии как пускового фактора атерогенеза связана с прооксидантным действием гомоцистеина, со способностью этой аминокислоты угнетать рост эндотелиальных клеток, оказывать митогенный эффект на гладкомышечные клетки, стимулировать адсорбцию белков в холестериновой бляшке и интенсифицировать биосинтез коллагена. Принципиально важными являются индуцированное гомоцистеином гиперкоагуляционное состояние, снижение мощности систем антиоксидантной защиты тканей, активация биосинтеза NO-синтазы.

2. Вторая реакция требует участия другой коферментной формы витамина – д-аденозин-В12. Кофермент входит в состав метималонил-КоА-мутазы. Особенностями катализа этого фермента является образование свободнорадикальных промежуточных продуктов реакции и изменение валентности кобальта. Субстратом для его действия является метилмалонил-КоА, образующийся при карбоксилировании пропионил-КоА (реакция рассматривалась в разделе «Биотин»).

О О

║ ║

С~ S KoA С ~S KoA

метилмалонил-КоА-мутаза

CH2 – CH CH2

│ │

COOH CH2

COOH

Метилмалонил~ SKoA Сукцинил~ SkoA

Эта реакция является весьма важной в метаболизме пропионовой кислоты (точнее, пропионил~SКoA), которая образуется при окислении жирных кислот с нечётным числом атомов углерода, боковой цепи холестерина, окислительном распаде аминокислот: изолейцина, метионина и серина.

Гиповитаминоз. Недостаточность кобаламинов возникает вследствие низкого содержания их в пище при вегетарианской диете и тем более – при голодании. Но большее значение имеет нарушение всасывания витамина при гастритах с пониженной кислотностью (в случаях нарушения образования внутреннего фактора Касла), оперативном удалении желудка или подвздошной кишки.

Гиповитаминоз проявляется злокачественной мегалобластической анемией, или анемией Аддисон-Бирмера. Болезнь также называется пернициозной анемией. Нарушения кроветворной функции аналогичны наблюдаемой при недостатке фолиевой кислоты. Помимо этого, поражаются задние и боковые столбы спинного мозга вследствие нарушения синтеза миелина; дегенеративные изменения отмечаются также в периферической нервной системе и головном мозге. Неврологическая симптоматика сводится к парастезиям, ощущению онемения кистей и стоп, неустойчивости походки, ослаблению памяти вплоть до спутанности сознания.

Нарушения кроветворения при кобаламиновом гиповитаминозе трудно увязать непосредственно с дефектом коферментных функций витамина В12. Однако если учесть тесное «сотрудничество» этого витамина с фолиевой кислотой, патогенез злокачественной анемии становится более понятным. Как уже указывалось, при недостаточности витамина В12 нарушается использование 5-метил-ТГФК в реакции синтеза метионина, вследствие чего вся фолиевая кислота попадает постепенно в своеобразную ловушку («секвестируется»), создающую функциональный дефицит её коферментных производных. Это объясняет нарушение биосинтеза нуклеиновых кислот и, следовательно, угнетение костно-мозгового кроветворения.

Врождённые нарушения всасывания, транспорта и обмена витамина В12.

Анемия при врождённом дефекте образования внутреннего фактора Касла. При этом нарушается всасывание витамина. В крови его концентрация значительно снижается. Эффективно парентеральное введение препаратов витамина.

Мегалобластическая анемия при нарушении всасывания витамина В12 в кишечнике. Нарушение обусловлено врождённым дефектом механизма высвобождения витамина в кровоток и связывания его с транскортином (транскобал-амином) II. Интересно, что всасывание липидов и углеводов при этом не нарушено. Характерны стойкая протеинурия и увеличение экскреции аминокислот (валина, изолейцина, треонина и метионина).

Анемия, обусловленная врождённым дефектом транскобаламинов. При отсутствии в крови транскобаламина II развивается тяжёлая анемия с первых недель жизни ребёнка. Терапевтический эффект достигается введением мегадоз витамина В12, в 1000 раз превышающих физиологическую. Очевидно, при таких концентрациях кобаламина транспортную функцию берут на себя другие белки.

Врождённые метилмалонатацидемии. При этой патологии отмечается высокий уровень метилмалоновой кислоты в крови и повышенная экскреция её с мочой. Метилмалонатацидемия может вызываться как недостаточным поступлением с пищей витамина В12, так и врождённым нарушением его метаболизма.

Врождённая метилмалонатацидемия проявляется в первый год жизни ребёнка упорной рвотой, кетоацидозом, нейтропенией и тромбоцитопенией, задержкой психомоторного развития, сниженной сопротивляемостью к инфекционным заболеваниям. Мегалобласты в крови тем не менее обычно не обнаруживаются. Диагноз ставится на основании обнаружения высокой концентрации метилмалоновой кислоты в моче, плазме крови или спинномозговой жидкости; уровень витамина в крови остаётся нормальным, что у

казывает на врождённый дефект его утилизации (но не всасывания). Заболевание носит выраженный семейный характер.

Метаболические нарушения при метилмалонатацидемии могут затрагивать разные аспекты функции кобаламинов, а именно:

1. может быть нарушено образование коферментной формы витамина – дезоксиаденозин-кобаламина, вследствие чего затрудняется превращение метилмалонил-КоА в сукцинил-КоА и метилмалоновая кислота в избыточном количестве появляется в крови.

2. Может нарушаться образование апофермента метилмалонил-КоА-мутазы, что также блокирует превращение метилмалонил-КоА в сукцинил-КоА.

3. Сочетанный дефект может затрагивать обе коферментные формы витамина – метил-В12 и д-аденозин-В12. Это сопровождается дополнительными метаболическими расстройствами, т.е. помимо нарушения обмена метилмалоновой кислоты блокируется также биосинтез метионина из гомоцистеина, следствием чего являются гомоцистинурия и снижение содержания метионина в крови и тканях. В крови обнаруживаются мегалобласты, отмечаются дегеративные изменения в нервной ткани.

Накопление метилмалоновой кислоты и метилмалонил-КоА тормозит синтез присущих клетке жирных кислот. Использование ацилсинтазой метилмалонил- КоА (вместо малонил- КоА) приводит к появлению жирных кислот необычной структуры с разветвлённой цепью; кроме того, накопление в тканях пропионил -КоА (предшественника не используемого метилмалонил-КоА) приводит к увеличению образования жирных кислот с нечётным числом атомов углерода. Всё это нарушает биосинтез сложных липидов в нервной ткани, приводит к её демиэлинизации и развитию соответствующих тяжёлых неврологических синдромов..

Лечение заключается в снижении доли принимаемого с пищей белка (либо диеты с низким содержанием изолейцина, треонина и метионина) и дополнительным назначением гомоцистеина и холина, а также высоких доз кобаламина.

Гипервитаминоз. Введение витамина даже в тысячекратной, по сравнению с физиологической, дозе не оказывало токсического эффекта.

Оценка обеспеченности организма витамином В12. Для этой цели служит определение содержания витамина в сыворотке крови, либо определение суточной экскреции метилмалоновой кислоты, которая возрастает при низкой обеспеченности организма кобаламином в десятки и сотни раз. Иногда применяется также метод нагрузки с помощью парэнтерального введения меченного по кобальту витамина В12.

Суточная потребность. Пищевые источники. Синтез кобаламинов в природе осуществляется исключительно микроорганизмами. Животные и растительные клетки такой способностью не обладают. Основные пищевые источники витамина – печень, мясо (в нём кобаламина 20 раз меньше, чем в печени), морские продукты (крабы, лососевые, сардины), молоко, яйца. У строгих вегетарианцев, исключающих из пищи не только мясные, но и молочные продукты, рано или поздно развивается В12-дефицитная анемия.

Суточная потребность – 3 мкг.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: