Пусть вокруг оси ОХ вращается криволинейная трапеция, ограниченная осью ОX, прямыми x=a и x=b и кривой
, где
- непрерывная, неотрицательная на отрезке [a; b] функция. Тогда эта криволинейная трапеция опишет тело, являющееся телом вращения.
Пример 8. Вычислить объем тела, образованного вращением вокруг оси ОХ фигуры, ограниченной двумя ветвями кривой
и прямой х=1.
Решение:
искомый объем получается как разность двух объемов, получающихся при вращении вокруг оси ОХ двух криволинейных трапеций, ограниченных сверху соответственно кривыми
и
. Область определения функции





Вычисление длины дуги






