Метод Ньютона – метод касательных

Пусть - корень уравнения отделен на отрезке , причем и непрерывны и сохраняют определенные знаки на этом же отрезке . Найдя какое-нибудь n-е значение корня (), уточним его по методу Ньютона. Для этого положим , где - считаем малой величиной. Разложим функцию f(x) в ряд Тейлора в окрестности точки x n по степеням h n. Тогда можно записать:

Ограничимся двумя членами ряда и так как , то:

.

Учитывая найденную поправку hn:,получим (n=0,1,2,…).

Рис.2.7 Метод касательных. Начальное приближение x0=b

По-другому этот метод называется методом касательных. Если в точке провести касательную к функции f(x), то ее пересечение с осью ОХ и будет новым приближением x1 корня уравнения

Хорошим начальным приближением является то значение, для которого выполнено неравенство . Погрешность вычислений Счет можно прекратить, когда

Теорема 2.2: Если , причем и отличны от нуля и сохраняют определенные знаки при , то, исходя из начального приближения , удовлетворяющего условию , можно вычислить методом Ньютона единственный корень уравнения с любой степенью точности.

Пример 2.5. Найти методом Ньютона корень уравнения x4-x-1 =0,

1-я производная
2-я производная положительна
один корень лежит на промежутке (-1.-0.5), второй на промежутке (1.1.5) Уточним левый корень методом Ньютона

Нашли корень исходного уравнения -0.7245 с точность 0.00007.

Рис. 2.8. Вычисления в Mathcad, реализующие метод касательных для примера 2.5


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: