Пусть дана система двух уравнений с двумя неизвестными:

и требуется найти действительные корни системы с заданной степенью точности.
Предположим, что система допускает лишь изолированные корни. Число этих корней и их приближенные значения можно установить, построив кривые
,
и определив координаты их точек пересечения.
Для применения метода итераций система приводится к виду:

Функции
и
называются итерирующими. Алгоритм решения задается формулами
,
где
и
- некоторое начальное приближение.
Имеет место следующая теорема.
Теорема 4.1 Пусть в некоторой замкнутой окрестности
имеется одно и только одно решение
системы. Если:
1. функции
и
определены и непрерывно дифференцируемы в R,
2. начальные приближения
,
и все последующие приближения, xn,yn для n=1,2 … принадлежат R,
3. в R выполнены неравенства
,
то процесс последовательных приближений сходится к решению
системы, т.е.
.
Эта теорема останется верной, если условие 3 заменить условием

Оценка погрешности n -го приближения дается неравенством
, (4.2)
где M – наибольшее из чисел
, входящих в неравенства. Сходимость метода итераций считается хорошей, если
, при этом
.
| Пример 4.3 Решить нелинейную систему уравнений методом итераций в Mathcad с точностью 0,005 Пусть дана система |
| Выразим из первого уравнения х, а из второго у и перепишем данную систему в виде: |

Отделение корней произведем графически. Построим функции
и
на одном графике. Они имеют одну точку пересечения в области
D(0 < x < 0.25; -1.9 < y < -2.2). Выберем за начальное приближение для метода итераций x0 = 0.25, y0 = -1.9
| Проверим условие сходимости теоремы в области D(а < x < b; c < y < d) |
| Считать будем до тех пор, пока не достигнем нужной точности |
| В данном случае метод итераций сходится достаточно медленно, так как значение М близко к единице Ответ: x=0.151 y=-2.034 |
Рис.4.3. Решение примера 4.3 в Mathcad