I. Механика. Общие понятия

В В Е Д Е Н И Е

Физика - наука о природе, изучающая наиболее общие свойства материального мира, наиболее общие формы движения материи, лежащие в основе всех явлений природы. Физика устанавли­вает законы, которым подчиняются эти явления.

Физика изучает также свойства и строение материальных тел, указывает пути практического использования физических законов в технике.

В соответствии с многообразием форм материи и ее движения физика подразделяется на ряд разделов: механика, термоди­намика, электродинамика, физика колебаний и волн, оптика, фи­зика атома, ядра и элементарных частиц.

На стыке физики и других естественных наук возникли новые науки: астрофизика, биофизика, геофизика, физическая хи­мия и др.

Физика является теоретической основой техники. Развитие физики послужило фундаментом для создания таких новых отраслей техники, как космическая техника, ядерная техника, квантовая электроника и др. В свою очередь, развитие технических наук способствует созданию совершенно новых методов физичес­ких исследований, обуславливающих прогресс физики и смежных наук.

ФИЗИЧЕСКИЕ ОСНОВЫ КЛАССИЧЕСКОЙ МЕХАНИКИ

Лекция 1 Понятие состояния в классической механике. Кинематика материальной точки. Механическое движение, система отсчета. Скорость, ускорение. Радиус кривизны траектории, нормальное и тангенциальное ускорения.
  Кинематика поступательного и вращательного движения твёрдого тела. Угловая скорость и ускорение, их связь с линейными.

I. Механика. Общие понятия

Механика - раздел физики, который рассматривает простей­шую форму движения материи - механическое движение.

Под механическим движением понимают изменение положения изучаемого тела в пространстве со временем относительно неко­торого гола или системы тел, условно считаемых неподвижными. Такую систему тел вместе с часами, в качестве которых может быть выбран любой периодический процесс, называют системой отсчета (С.О.). С.О. часто выбирают из соображений удобства.

Для математического описания движения с С.О. связывают систе­му координат, часто прямоугольную.

Простейшее тело в механике - материальная точка. Это те­ло, размерами которого в условиях денной задачи можно пренебречь.

Всякое тело, размерами которого пренебречь нельзя, рас­сматривают как систему материальных точек.

Механика подразделяется на кинематику, которая занимается геометрическим описанием движения, не изучая его причин, динамику, которая изучает законы движения тел под действием сил, и статику, которая изучает условия равновесия тел.

Кинематика точки

Кинематика изучает пространственно-временное перемещение тел. Она оперирует такими понятиями, как перемещение , путь , время t, скорость движения , ускорение .

Линию, которую описывает при своем движении материальная точка, называют траекторией. По форме траектории движения де­лятся на прямолинейные и криволинейные. Вектор , соеди­няющий начальную I и конечную 2 точки, называют перемещением (рис. I.I).

Каждому моменту времени t соответствует свой радиус-вектор :

Таким образом движение точки мо­жет быть описано векторной функ­цией.

которая определяем векторный способ задания движения, или тре­мя скалярными функциями

x=x(t); y=y(t); z=z(t), (1.2)

которые называют кинематическими уравнениями. Они определяют задание движения координатным способом.

Движение точки будет также определено, если для каждого момента времени будет установлено положение точки на траекто­рии, т.е. зависимость

(1.3)

Она определяет задание движения естественным способом.

Каждая из указанных формул представляет собой закон дви­жения точки.

Скорость

Если моменту времени t1 соответствует радиус-вектор , а , то за промежуток тело получит перемещение . В этом случае средней скоростью за Dt назы­вают величину

, (1.4)

которая по отношению к траектории представляет секущую, про­ходящую через точки I и 2. Скоростью в момент времени t назы­вают вектор

, (1.5)

Из этого определения следует, что скорость в каждой точке траектории направлена по касательной к ней. Из (1.5) следует, что проекции и модуль вектора скорости определятся выражениями:

, (1.6)

Если задан закон движения (1.3), то модуль вектора скорости определится так:

, (1.7)

Таким образом, зная закон движения (I.I), (1.2), (1.3), можно вычислить вектор и модуль доктора скорости и, наоборот, зная скорость из формул (1.6), (1.7), можно вычислять коор­динаты и путь.

Ускорение

При произвольном движении вектор скорости непрерывно ме­няется. Величина, характеризующая быстроту изменения вектора скорости, называется ускорением .

Если в. момент времениt1скорость точки ,а приt2 - , то приращение скорости составит (Рис.1.2). Среднее ускорение при этом

Рис.1.2

, (1.8)

а мгновенное

, (1.9)

Для проекции и модуля ускорений имеем: , (1.10)

Если задан естественный способ движения, то ускорение можно определить и так. Скорость меняется по величине и по направлению, приращение скорости раскладывают на две величины; - направленный вдоль (приращение скорости по величине) и - направленный перпендикулярно (приращение. скорости по направлению), т.е. = + (Рис.I.З). Из (1.9) получаем:

(1.11); (1.12)

Тангенциальное (касательное) ускорение характеризует быстроту изменения по величине (1.13)

нормальное (центростремительное ускорение) характеризует быстроту изменения по направлению. Для вычисления an рассмотрим

DOMN и DMPQ при условии малого перемещения точки по траек­тории. Из подобия этих треугольников находим PQ:MP=MN:OM:

, (1.14)

Полное ускорение в этом случае определится так:

, (1.15)

Примеры

I. Равнопеременное прямолинейное движение. Это движение с постоянным ускорением(). Из (1.8) находим

или , где v 0 - скорость в момент времени t 0. Полагая t 0=0, находим , а пройденный путь S из формулы (I.7):

где S 0 - постоянная, определяемая из начальных условий.

2. Равномерное движение по окружности. В этом случае скорость меняется только по направлению, то есть - центростремительное ускорение.

Лекция 2 Динамика материальной точки и поступательного движения твёрдого тела. Закон инерции.
  Внешние и внутренние силы. Центр масс. Закон сохранения импульса.

I. Основные понятия

Перемещение тел в пространстве - результат их механического взаимодействия между собой, в результате которого проис­ходит изменение движения тел или их деформация. В качестве мары механического взаимодействия в динамике вводится величина – сила . Для данного тела сила - внешний фактор, а характер движения зависит и от свойства самого тела - податливости оказываемому на него внешнему воздействию или степени инерции те­ла. Мерой инерции тела является его масса т, зависящая от количества вещества тела.

Таким образом, основными понятиями механики являются: дви­жущаяся материя, пространство и время как формы существования движущейся материи, масса как мера инерции тел, сила как мера механического взаимодействия между телами.Соотношения между этими понятиями определяются законам! движения, которые были сформулированы Ньютоном как обобщение и уточнение опытных фактов.

Законы механики

1-й закон. Всякое тело сохраняет состояние покоя или равно­мерного прямолинейного движения, пока внешние воздействиянеизменяют этого состояния. Первый закон заключает в себе закон инерции, а также определение силы как причины, нарушающей инерциальное состояние тела. Чтобы выразить его математически, Ньютон ввел понятие количества движения или импульса тела:

(2.1)

тогда , если

2-й закон. Изменение количества движения пропорционально при­ложенной силе и происходит по направлению действия этой силы. Выбрав единицы измерения m и так, чтобы коэффициент пропорциональности был равен единице, получаем

или (2.2)

Если при движении m=const, то

или (2.3)

В этом случае 2-й закон формулируют так: сила равна произведению массы тела на его ускорение. Этот закон является основным законом динамики и позволяет по заданным силам я начальным условиям находить закон движения тел. 3-й закон. Силы, с которыми два тела действуют друг на друга, равны и направлены в противоположные стороны, т.е. , (2.4)

Законы Ньютона приобретают конкретный смысл после того, как указаны конкретные силы, действующие на тело. Например, часто в механике движение тел вызывается действием таких сил: сила тяготения , где r - расстояние между телами, - гравитационная постоянная; сила тя­жести - сила тяготения вблизи поверхности Земли, P=mg; сила трения ,где k - коэффициент трения, N - сила нормального давления; cила упругости , где k - коэффициент упругости (жесткости); x -перемещение тела.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: