Концептуальное введение

Основным структурно-функциональным элементом мозга является нервная клетка. Она генерирует и проводит электрические импульсы – потенциалы действия (ПД). Связанное с ПД движение зарядов индуцирует локальные вихри электромагнитного (ЭМ) поля, которые, в принципе, можно определить как ЭМ-кванты или квазифотоны. Метрика, принцип и скорость движения квазифотона будут определяться электрофизическими свойствами и структурными особенностями нейрона и окружающей его среды. За энергоинформационное обеспечение механизма генерации импульсов и за синтез метаболитов ответственно тело клетки, ее ядро и дендриты. Аксоны в симбиозе с нейроглиями (олигодендроциты, астроциты) транслируют метаболиты и импульсы, реализуя их энергию и информацию через синтез и действия нейромедиаторов в синапсах. Дееспособность нервной клетки обеспечивает энергия реакции окисления глюкозы, которая в митохондриях трансформируется в энергию макроэргических связей АТФ. В нервных клетках энергия АТФ преобразуется в энергию квазифотонов, в энергию химических связей синтезируемых веществ, в кинетическую энергию метаболитов и молекул среды (тепло). За счет этой же энергии осуществляется рост аксонов, развитие нейронных сетей и нейроглиальных связей, которые, в частности, отвечают за механическую целостность цитоскелета мозга. Физико-химические свойства воды, составляющей основу жидкостных систем мозга (ликвора, крови), в полной мере ответственны за электрофизику мозга и за его термодинамические свойства, как на микро, так и на макро уровнях его организации.

Таким образом, поведение мозга как единой физической системы в первую очередь подчинено классическим законам электрофизики и термодинамики сплошных коллоидных сред. В рамках данных законов осуществляется метаболизм нейрона, и мозг исполняет свои базовые функции, управляя гомеостазом и своевременно запуская механизм полового размножения. Соответствующая данным функциям физика мозга будет одинакова для всех млекопитающих, поэтому ее можно считать базовой. Именно это и позволяет экстраполировать результаты исследования мозга животных на мозг человека. Однако только организм гоминида (homo erectus) на этапе прямохождения приобрел чувствительность к фактору филогенеза геокосмического масштаба [1], под влиянием которого в условиях социальной среды в его мозгу стали формироваться и развиваться структуры ответственные за речь и мышление. Анатомические различия мозга современного человека и обезьяны ярко выражены в строении и объеме лобно-височных долей неокортекса. Ключевую роль в физике мышления играет структурно-функциональная асимметрия полушарий мозга, которая отсутствует у животных и имеет расово-половую дифференциацию у человека. Генезис данной асимметрии мог быть детерминирован перестройкой физики половых органов, рук, зрения и слуха на этапе прямохождения и в процессе развития навыков к сознательному труду. Исходя из этих данных, в основу когнитивных функций мозга положим физику лобно-височных долей неокортекса и хиральность коммуникаций мозга, как межполушарных и соматических, так и с внешней средой.

Учитывая наличие в мозгу метастабильных и динамичных квазифотонов различных типов и энергий, можно предполагать их активное участие не только в метаболизме, но и в физике когнитивных функций в рамках законов классической квантовой механики. Природа внешнего универсального хирального фактора, как и природа хиральных квантов энергии в мозгу не обязательно должна совпадать с природой квазифотонов, метрика которых, тем не менее, может быть спиральной. Механизмы поглощения и действия в мозгу хиральных квантов энергии (например, нейтринной природы [1]) тесно связаны с физикой самоорганизации и фазовых переходов в кооперативных хиральных системах [2, 3].

Главный вопрос физики мозга состоит в моделировании механизма психофизического изоморфизма [4], который, по сути, суммирует в себе следующие процессы:

– формирование на уровне атомно-молекулярной системы ЭМ-матрицы смысла-слова (мыслеформы);

– распознавание и вербализация другой системой атомов содержания мыслеформы.

Пространственно-временная разделенность двух физических систем, участвующих в формировании и распознавании мыслеформы предполагает физическое обособление мыслеформы в виде связанной системы дискретных форм материи, изоморфной ЭМ-матрице мыслеформы. Физическая обособленность мыслеформы является необходимым условием и для адекватности обмена информацией по механизму нелокальных квантовых корреляций. Идеальным, в этом смысле, носителем мыслеформы могут быть простейшие формы материи, предшествующие квантам полей и элементарным частицам. Тогда задача согласования и стыковки физики мышления с физикой базовых функций мозга сведется к проблеме вербализации фундаментальной динамической формы материи, способной благодаря своему движению становиться носителем энергии и информации [5]. Аксиоматику простейших форм материи (энергоформ) построили [6], опираясь на законы диалектики и экстраполируя достоверные положения классической и квантовой физики. Универсализм энергоформ (ЭФ) позволяет их использовать для моделирования мыслеформ, квазифотонов и предшественников элементарных частиц. Взаимодействия ЭФ с веществом мозга идут при посредничестве квазифотонов, сочетая фрактально-резонансный принцип действия ЭФ [6] с механизмом нелокальных квантовых корреляций [7].

К энергоформам и их конденсатам, по сути, относятся гипотетические «струны», «кварки», «вихри Абрикосова», «матрицы плотности» и другие абстрактные модели субэлементарных дискретных форм материи. В работе [8], при анализе термодинамики мыслительной деятельности мозга, на роль «рабочего тела» аппарата мышления был предложен газ гипотетических х-частиц (фермионов), распределенный, по нейронной сети коры мозга. Если попытка отнесения х-частиц к нейтрино безосновательна [4, 6], то некоторые особенности термодинамики х-частиц приемлемы для биоактивных ЭФ и квазифотонов.

Таким образом, физику мышления можно обособить в рамках физики базовых функций мозга, отнеся к ее ведению уникальную способность вещества мозга при нормальных условиях резонансно поглощать, генерировать, селектировать, комбинировать и сохранять дискретные формы материи (энергоформы и квазифотоны), распознавая в их действиях смысл-слова, психическую или иную ментальную информацию. С целью обоснования применения энергоформ и квазифотонов для моделирования физики мышления в настоящей работе проанализировали структурно-функциональные особенности мозга и сделали оценки энергий активации (ЭМ-квантов) ключевых физико-химических процессов, обеспечивающих энергоинформационный обмен внутри мозга и между мозгом и внешней средой, к которой относится также и тело человека. Результаты анализа и оценок использовали для проведения экстраполяций известных физических закономерностей на уровень физики энергоформ.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: