Капсулированные нервные окончания

Тельце Фатера Пачини

ЭМИ можно привлечь и для объяснения механизма генерации электрических импульсов в капсулированных нервных окончаниях. Наиболее важным для физики мозга представителем такого рода окончаний является тельце Фатера-Пачини (ТФП) (Рис 10). ТФП в изобилии присутствуют в подкожном слое ладоней и стоп, в женских гениталиях и в соединительных тканях внутренних органов [19].

Рис 10. Капсулированное окончание

нерва – тельце Фатера-Пачини [19].

Линейные размеры достигают 1-2 мм.

Очевидно, что ТФП помимо сенсорной функции могут акцептировать гравитационную и геомагнитную энергии и одновременно исполнять роль генераторов ЭМ-квантов. Предполагают [19], что в основе механизма генерации ПД в ТФП лежит биохимический отклик ТФП на его механическую деформацию. Однако, изоморфизм ТФП и сложных электромагнитных устройств, имеющих на стержне две вложенных одна в другую катушек индуктивности, позволяет предположить участие ЭМИ в механизме генерации ПД. Деформация ТФП, будучи сопряжена с изменениями его индукционных или емкостных характеристик, может приводить к возбуждению электромагнитных импульсов, стимулирующих генерацию ПД. В этом случае снижение величин L и С в соответствие с формулой (6) должно привести к возрастанию частоты генерации стимулов (w), а значит, и частоты следования ПД, что и наблюдается на опыте [19]. Отметим, что при отсутствии внешней деформации ТФП их фоновую активность в качестве «генераторов» квазифотонов может обеспечивать ритмическая деформация клетчатки вокруг ТФП, отвечающая пульсации кровеносной системы. Не исключено также, что LC-контур в структуре ТФП при движениях рук и ног может резонансно поглощать энергию геомагнитного поля.

Глаз

Глаз можно считать интегральным капсулированным окончанием большого числа аксонов зрительного нерва. Его основная функция – преобразование фронта фотонов видимого диапазона в сложную пространственно-временную мозаику ПД и квазифотонов. Электрическая энергия (импульс) поглощенного сетчаткой фотона стимулирует генерацию в ней ПД и частично преобразуется в импульс спайка зрительного нерва. В такой роли выступают около 10% от попадающих в глаз фотонов, остальные 90% поглощаются оптическими средами глаза [19]. При поглощении фотонов, как в сетчатке, так в других элементах глаза высока вероятность генерации состояний с внутри- и межмолекулярным переносом заряда в донорно-акцепторых фрагментах (D–A–δ). Такие метастабильные состояния называются экситонами. Кинетика процесса релаксации экситонов в сетчатке коррелирует с кинетикой генерации ПД. Достаточно большое время жизни и высокая фотостационарная концентрация этих состояний обусловливают дипольную поляризацию поверхности сетчатки [20]. Перемещение зарядов сетчатки при движении глаз индуцирует вихревые магнитные поля (ЭМ-вихрь), максимальная плотность энергии которых достигается в лобных и височных долях, а также в пазухах черепа (верхнечелюстных, клиновидных, лобных) (Рис 11). Известно [11], что в данных областях локализованы функции внимания и самосознания, поэтому ЭМ-вихри глаз могут принимать прямое участие в их активации. С учетом этого предположим, что глаза и их нервная система наряду со своей сенсорной функцией играют доминирующую роль в физике когнитивных функций мозга. Именно поэтому при усиленной умственной работе, даже не связанной с чтением, сильно устают глазные мышцы, что провоцирует развитие специфического рисунка морщин вокруг глаз. Отметим, что при врожденном поражении отделов ЦНС, ответственных за формирование наглядных представлений внешнего мира («центральная врожденная слепота»), ребенок обречен остаться идиотом.

Рис 11. Распределение магнитной индукции при различных движениях глаз (а, б, с) [20, 21] и схема потоков магнитной индукции во фронтальной проекции (д). Пол. – магнитное поле направлено внутрь, отр. – наружу объекта. Величина В-поля пропорциональна радиусу кружка. А), б) – горизонтальное движение глаз справа налево в пределах угла в 55о; с) – движение глаз снизу вверх. На Рис 11е показаны области мозга (вид спереди), ответственные за самосознание: красным цветом выделена медиальная префронтальная кора (связывает самоощущения и память о себе); желтым – предклинье (активация ретроспективной памяти о себе) [11].

Геометрия вихревых B- и D-полей глаз задается траекториями зарядов сетчатки и мышц при движении глаз в вертикальном и горизонтальном направлениях. Локализация максимального значения В-поля при горизонтальном перемещении глаз в срединной точке (Рис 11а) указывает на суммирование в этой точке В-полей от обоих глаз. Такое возможно при условии, если метрики вихрей индуцируемых правым и левым глазам зеркально симметричны. Не исключено, что хиральность электромагнитного стимула, а значит, и знаки миелиновых спиралей нервов правого и левого глаза противоположны. Можно представить, что ЭМ-вихри индуцируют в ликворе продольной щели между полушариями зеркально симметричные пары ЭФ, их слияние, в принципе, может давать квазифотон и такой механизм генерации ЭМ-квантов, очевидно, лежит в основе экзотермического процесса рекомбинации двух разноименных электрических зарядов. Очевидно, что организующее действие ЭМ-вихрей глаз в процессе формирования самосознания ребенка обусловливает образование в медиальной префронтальной области коры нейронов уникальной формы, называемых клетками-веретенами [11, 15]. Аналогичные реакции слияния-рекомбинации ЭФ, индуцируемых в правом и левом полушарии, могут идти также и в ликворе третьего и четвертого желудочков, принимая активную роль в их биоэнергетике. Упрощенная схема фронтальной проекции D-, B-вихрей глаз показана на Рис 11д. Крестик в центре глаза обозначает уходящий в плоскость рисунка спайк зрительного нерва. Данная схема совпадает также с распределением силовых линий магнитного диполя, ориентированного по линии носа. Это согласуется также с тем фактом, что пористые кости стенок носа, клиновидной пазухи и решетчатой кости имеют высокое значение остаточной намагниченности [30].

В подтверждение важной роли глаз в когнитивной физике мозга говорит наличие сложных взаимоотношений между энергетикой глаз и базовым ритмом электрофизики мозга (альфа-ритмом):

- альфа-ритм имеют только высшие млекопитающие [22] и он устанавливается синхронно с половым созреванием, после чего он не фиксируется в лобных долях [15];

- альфа-ритм, как и бета-ритм, может локализоваться обособленно в правом- или левом полушарии мозга [23];

- альфа-ритм исчезает при потере сознания и открывании глаз, однако у слепых он либо плохо выражен, либо отсутствует [15];

- частоту альфа-ритма (~10 Гц) соотносится с частотой стоячей ЭМ-волны в сферическом резонаторе, который образует поверхность Земли и ее ионосфера [24].

Стекловидное тело глаза в фоновом режиме может конденсировать ЭМ-энергию внешней среды и, возможно, энергию солнечного нейтрино [1, 6], напрямую питая этой энергией мозг. В пользу данного предположения свидетельствуют данные:

– быстрое движение глаз в фазе парадоксального сна (фаза-БДГ) сопряжено с интенсификацией физики мозга [15];

– образование специфического пятипальцевого рельефа на поверхности глазницы, обращенной к мозгу и искривление линии носа [25];

– мышцы глазного яблока спонтанно подергиваются с частотой 20 – 150 Гц (микросаккады, тремор) [15];

– граничащий со стекловидным телом слой ганглиозных клеток сетчатки в темноте и при закрытых глазах проявляют фоновую активность с частотой от 1 до ~20 импульсов в секунду [26];

- воздействие на закрытые глаза механического давления и импульсного магнитного поля инициирует «видение» белого света (фосфены) [15, 27]

- увеличение интенсивности света ведет к возрастанию частоты генерации ПД в зрительном нерве [15];

- хрусталик и стекловидное тело глаза оптически активны [28, 29];

- гликолиз глюкозы в стекловидном теле дает наряду с АТФ еще хиральную молочную кислоту [15];

- характерное время гидродинамики глаза составляет ~900 с, за это время обновляется половина жидкости стекловидного тела [15].

Онтогенез асимметрии зрения, обоняния, слуха, лица (искривление носа) и половых органов синхронизован с процессом стабилизации частоты альфа-ритма [31] и за 12 – 13 лет повторяет этап филогенеза, соответствующий прямохождению. Причем уже к двум годам, когда ребенок начинает самостоятельно ходить, в генезис асимметрии мозга включается энергетика ТФП стоп и физика половых органов, гендерные особенности которой накладывают свой отпечаток на топологию и функции мозга мужчины и женщины [32].

КВАЗИФОТОН

Типы квазифотонов

Для описания свойств различных конденсированных сред широко используют понятие квазичастица [33]. Поскольку содержание воды в мозгу достигает ~75% [15], его можно считать высококонцентрированным коллоидным раствором. Для описания механизмов энергоинформационных процессов, лежащих в основе физики мозга, удобно использовать понятие квазифотона, как обобщение ЭМ-кванта. Таким образом, квазифотон является носителем избыточной энергии электромагнитного поля, локализованной на электроне или на системе электронов той или иной упорядоченной атомно-молекулярной структуры. Предшественником квазифотона могут быть фотон или ЭМ-квант, в случае их поглощения системой. В зависимости от энергии фотона и электронной структуры системы метрика, время жизни и судьба квазифотона варьируются в широких пределах. Физика квазифотонов генетически наследует законы атомно-молекулярной спектроскопии и свойства возбужденных состояний молекул различных типов (электронные, колебательные, трансляционные, вращательные) [34]. Смешанным электронно-ядерным конфигурациям возбужденных состояний будут отвечать вращательные и колебательные квазифотоны, а чисто электронным возбужденным состояниям – оптические квазифотоны. Примерами оптического квазифотона служат, ЭМ-стимул генерирующий ПД, экситон или электронно-возбужденное состояние молекулы. Колебательный квазифотон в упругой связанной структуре подобен фонону. Вращательный квазифотон в системе связанных ядерных или электронных спинов можно отождествить с магноном [33]. Квазифотоны могут быть свободными и связанными в зависимости от свойств среды и механизма взаимодействия ее элементов. Таким образом, метрико-динамические характеристики квазифотонов будут определяться типом химических связей и видом межмолекулярных взаимодействий, которые определяют степень упорядоченности среды.

Энергия квазифотонов различных типов меняется в широком диапазоне, верхней границей которого можно считать энергию квазифотона стимулирующего генерацию ПД в перехвате Ранвье (~10–19 Дж). За низший предел энергии квазифотона можно принять энергию вихревого ЭМ-поля, генерируемого движением глаз. Плотность данной энергии при В ~ 4 пТ имеет порядок:

Е = В2/(2μоμ) ~ 10–23 Дж/см3 или ~0,01 кДж/моль в см3. (11)

Степень влияния данного поля на магнитно-восприимчивые микро и макро структуры и среды мозга будет определяться величиной плотности энергии:

Е = (М В)/2,

где М - удельная намагниченность (удельная плотность магнитных моментов - m), равная:

М = Σ m.

В случае кольцевых токов любой природы (J) m = J ΔS, где ΔS – площадь поверхности, охватываемой током. Причем поляризационный эффект магнитного поля может усиливаться под влиянием теплового движения частиц среды [36].

Сравнима с величиной (11) энергия теплового эффекта от светового раздражения глаз крысы, который проявляется повышением локальной температуры зрительной коры мозга на ~0,06о С [11]. Величина энергии квазифотона отвечающего данному кванту тепловой энергии составит ~10–24 Дж или ~10–3 кДж/моль. В диапазон 10–3 – 102 кДж/моль попадает энергия биогенного МКВ-излучения (λ = 100 – 1 мм, Е = 10–3 – 0,1 кДж/моль) [37]; в том числе и энергия резонансных частот воды (λ ~ 6 мм, Е = 0,02 кДж/моль) [38]. Известно [3], что энергия активации процессов ассоциирования сахаров и квантов биогенного МКВ-излучения на один-два порядка меньше тепловой энергии и сравнима по порядку величины с (11). Отсюда следует, что в процессах самоорганизации жидких сред мозга ключевую роль играют квазифотоны вращательного типа и физика лобно-височных долей, ответственная за когнитивные функции мозга, непосредственно связана с электрофизикой глаз.

Метрика квазифотона

Элементарной структурной ячейкой жидкой воды является динамический тетраэдр, образованный из четырех молекул воды, связанных между собой водородными связями. Пятая молекула воды или соразмерная с ней молекула или атом могут находиться в центре тетраэдра, тогда он называется центрированным тетраэдром (Рис 13). Благодаря водородным связям, вода эффективно взаимодействует с растворенными молекулами, расширяя тем самым спектр их физико-химических свойств. Данная особенность водных коллоидов и гелей особенно важна для физики мозга, поскольку его межклеточные объемы, как правило, сравнимы с размерами биомолекул, клеток и органелл [35].

В силу этого следует предполагать существенное влияние эпитаксиального эффекта на процессы, регулирующие межнейронные и нейроглиальные взаимодействия. Известно, например, что в химических реакциях, протекающих в оптически активной среде или на поверхности кварца, возрастает выход хиральных продуктов. Увеличению эпитаксиального эффекта мембран и стенок различных органов, помимо посредничества воды, очевидно, способствуют связанные или адсорбированные поверхностью полипептидные и полисахаридные цепочки, а также микроворсинки (Рис 12) [15, 17]. Эпитаксиальный эффект и присутствие хиральных сахаров сказывается на кинетике обратимой адсорбции ионов и нейромедиаторов на поверхностях мембран нейронов как в перехватах Ранвье, так и в синапсах [14].

Рис. 12. Схема мембраны и выходящих из нее полисахаридных и полипептидных цепочек

Метаболиты, имеющие заряд, диполь, механический или магнитный моменты, а также хиральность, влияя на электродинамическую постоянную (εμ) среды, метрику и динамику надмолекулярных структур, могут в широких пределах менять кооперативные свойства растворов, эффективность генерации и механизм движения квазифотонов. Это относится, прежде всего, к ионам (Na+, K+, Cl, Р3+) (Таблица 1) и к молекулам, играющим роль переносчиков, акцепторов и преобразователей квазифотонов (кислород, углекислый газ, вода, сахара, АТФ, нейромедиаторы, гормоны, ферменты).

Рис 13. Схема слияния двух зеркально симметричных подвижных ЭФ (ν/g-пар) в покоящийся квазифотон с тетраэдрической метрикой (а) и схема электронных орбиталей молекулы воды (б)

Основным механизмом движения квазифотонов будет их резонансное поглощение и переизлучение молекулами среды, метаболитами и надмолекулярными структурами. Главным элементом трехмерной метрики жидкой среды и большинства органических метаболитов служит тетраэдр, электронно-ядерной матрицей которого является sp3-гибридизированная система электронных орбиталей атомов углерода, азота и кислорода. Следовательно, квазифотон, локализованный на том или ином метаболите, с наибольшей вероятностью будет иметь метрику изоморфную геометрии sp3-гибридизации.

Используя представление о ν/g-парах, покоящуюся ЭФ или локализованный квазифотон с тетраэдрической метрикой можно получить по схеме, показанной на Рис 13. Правила комбинирования и конденсации ЭФ (ν/g-пар) [6] позволяют моделировать и рассчитывать метрику квазифотонов различных типов, в том числе изоморфных метрике sp- и sp2-гибридизированных атомных орбиталей. Энергия квазифотонов, связанных с π-электронами, будет меньше энергии квазифотонов, отвечающих колебательно-вращательным возбуждениям атомов или деформациям σ-скелета. Низшие колебательные уровни молекулы углекислого газа (О=С=О), имея энергию от 10–21 до 10–20 Дж, могут заселяться за счет поглощения тепловых квантов (kT). Специфика расположения уровней допускает их инверсную заселенность, что позволяет использовать углекислый газ в качестве активной среды лазера (λ ~ 10 мкм). В жидких средах предрасположенных к самоорганизации молекула СО2 может быть донором колебательных квазифотонов для молекул с карбоксильной группой (–НСО). Аналогично, молекулы с ароматическими циклами будут акцепторами квазифотонов, отвечающих конформационным колебаниям изоморфных им насыщенных углеродных циклов и гетероциклов. Высокая активность, например, стероидных гормонов производных холестерола, имеющих конденсированные гексановые цикла, может быть обусловлена насыщенностью их молекул квазифотонами с sp3-метрикой (Рис 13). При этом изоморфные фрагментам гормонов ароматические молекулы (бензол, антрацен, пирен), эффективно дезактивируя гормоны и искажая их метаболические функции, могут инициировать канцерогенез [39].

Таблица 1.

Ядерно-электронные характеристики элементов

  Элемент Характеристики ядра   Основное электр. состояние Атома   Ионный радиус (нм)  
Спин (I) Магнитный момент (× μн) Магнитная воспри-имчивость (C13 = 1,00) Квадру-польный момент (Q×1028, м2)
Натрий 11Na23   3/2   2,22   525,0   0,12   [Ne]3s1   0,098
Калий 19K39   3/2   0,39   2,7   0,055   [Ar]4s1   0,133
Хлор 17Cl35 17Cl37   3/2   0,82 0,68   20,2 3,8   – 0,08 – 0,06   [Ne]3s25   0,182
Фосфор 15Р31 15Р32 (14 дней)   1/2   1,13 –0,25     – –   [Ne]3s22   0,044  

Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: