Структура стандартов Ethernet. Понятие МАС-адреса

В 80-е годы, как уже отмечалось ранее,произошёл бурный рост компьютерных технологий, связанный с появлением новой элементной базы, и новым витком развития сетевых решений.

Были приняты основные стандарты на коммуникационные технологии для локальных сетей: в 1980 году — Ethernet, в 1985—Token Ring, в конце 80-х —FDDI. Это позволило обеспечить совместимость сетевых операционных систем на нижних уровнях, а также стандартизировать интерфейсОСс драйверами сетевых адаптеров.

В 1980 году в результате работы «комитета 802», организации Instituteof Electrical and Electronics Engineers, IEEE, было принято семейство стандартов IEEE 802-х, которые содержат рекомендации по проектированию нижних уровней локальных сетей. Позже результаты работы этого комитета легли в основу комплекса международных стандартов ISO8802-1...5.

Стандарты семейства IEEE 802.х охватывают два нижних уровня моделиISO/OSI- физический и канальный, потому что именно эти уровни в наибольшей степени отражают специфику локальных сетей

Функции канального уровня подразделяются на два подуровня:

· управление доступом к среде передачи (MediaAccess Control, MAC);

· управление логическим соединением (LogicalLink Control, LLC).

Подуровень MACопределяет такие элементы канального уровня, как логическая топология сети, метод доступа к среде передачи информации и правила физической адресации между сетевыми объектами.Аббревиатура MAC используется также при определении физического адреса сетевого устройства: физический адрес устройства (который определяется внутри сетевого устройства или сетевой карты на этапе производства) часто называют МАС-адресом этого устройства. Существует возможность программно изменитьМАС-адресбольшого количества сетевых устройств, особенно сетевых карт. При этом необходимо помнить, что канальный уровень моделиISO/OSIнакладывает ограничения на использованиеМАС-адресов: в одной физической сети не может быть двух или более устройств, использующих одинаковыйМАС-адрес.

Для определения физического адреса сетевого объекта может быть использовано понятие «адрес узла». Адрес узла чаще всего совпадает сМАС-адресом или определяется логически при программном переназначении адреса.

Подуровень LLCопределяет правила синхронизации передачи и сервиса соединений. Этот подуровень канального уровня тесно взаимодействует с сетевым уровнем моделиISO/OSIи отвечает за надежность физических (с использованиемМАС-адресов) соединений.

Канальный уровень обеспечивает сервис соединений.

Существует три типа сервиса соединений:

· сервис без подтверждения и без установления соединений (unacknowledged connectionless) - посылает и получает фреймы без управления потоком и без контроля ошибок или последовательности пакетов;

· сервис, ориентированный на соединение (connection-oriented), -обеспечивает управление потоком, контроль ошибок и последовательности пакетов посредством выдачи квитанций(подтверждений);

· сервис с подтверждением без установления соединения (acknowledged connectionless) - использует квитанции для управления потоком и контроля ошибок при передачах между двумя узлами сети.

Сервис соединений использует подтверждения,или квитанции, представляющие собой специальные сообщения, которые подтверждают факт приема фрейма или пакета данных. Подтверждения используются для управления потоком данныхLLC-уровня и для контроля ошибок.

 

 

14 Методы доступа к среде передачи данных.

Различают физическую топологию, определяющую правила физических сое­динений узлов (прокладку реальных кабелей), и логическую топологию, опреде­ляющую направления потоков данных между узлами сети. Логическая и физиче­ская топологии относительно независимы друг от друга. Физические топологии — шина (bus), звезда (star), кольцо (ring), дерево (tree), сетка (mesh). В логической шине информация (кадр), передаваемая одним узлом, одновре­менно доступна для всех узлов, подключенных к одному сегменту. Передачу считанных данных на вышестоящий уровень производит только тот узел (узлы), которому адресуется данный кадр. Логическая шина реализуется на физической топологии шины, звезды, дере­ва, сетки. Метод доступа к среде передачи, разделяемой между всеми узлами сегмента, — вероятностный, основанный на прослушивании сигнала в шине (Ethernet), или детерминированный, основанный на определенной дисциплине передачи права доступа (ARCnet).

В логическом кольце информация передается последовательно от узла к узлу. Каждый узел принимает кадры только от предыдущего и посылает только после­дующему узлу по кольцу. Узел транслирует дальше по сети все кадры, а обраба­тывает только адресуемые ему. Реализуется на физической топологии кольца или звезды с внутренним кольцом в концентраторе. Метод доступа — детерми­нированный. На логическом кольце строятся сети Token Ring и FDDI.

Современный подход к построению высокопроизводительных сетей перено­сит большую часть функций МАС-уровня (управление доступом к среде) на центральные сетевые устройства — коммутаторы. При этом можно говорить о логической звезде, хотя это название широко не используется.

Методы доступа к среде передачи делятся на вероятностные и детерминиро­ванные.

При вероятностном (probabilistic) методе доступа узел, желающий послать кадр в сеть, прослушивает линию. Если линия занята или обнаружена коллизия (столкновение сигналов от двух передатчиков), попытка передачи откладывает­ся на некоторое время. Основные разновидности:

CSMA/CA (Carrier Sense Multiple Access/Collision Avoidance) — множе­ственный доступ с прослушиванием несущей и избежанием коллизий. Узел, готовый послать кадр, прослушивает линию. При отсутствии несущей он посылает короткий сигнал запроса на передачу (RTS) и определенное время ожидает ответа (CTS) от адресата назначения. При отсутствии от­вета (подразумевается возможность коллизии) попытка передачи откла­дывается, при получении ответа в линию посылается кадр. При запросе на широковещательную передачу (RTS содержит адрес 255) CTS не ожи­дается. Метод не позволяет полностью избежать коллизий, но они обра­батываются на вышестоящих уровнях протокола. Метод применяется в сети Apple LocalTalk, характерен простотой и низкой стоимостью цепей доступа.

CSMA/CD (Carrier Sense Multiple Access/Collision Detect) — множественный доступ с прослушиванием несущей и обнаружением коллизий. Узел, готовый послать кадр, прослушивает линию. При отсутствии несущей он начинает передачу кадра, одновременно контролируя состояние линии. При обнаружении коллизии передача прекращается и повторная попытка откладывается на случайное время. Коллизии — нормальное, хотя и не очень частое явление для CSMA/CD. Их частота связана с количеством и активностью подключенных узлов. Нормально коллизии могут начинаться в определенном временном окне кадра, запоздалые коллизии сигнализи­руют об аппаратных неполадках в кабеле или узлах. Метод эффективнее, чем CSMA/CA, но требует более сложных и дорогих схем цепей доступа. Применяется во многих сетевых архитектурах: Ethernet, EtherTalk (реали­зация Ethernet фирмы Apple), G-Net, IBM PC Network, AT&T Star LAN.

Общий недостаток вероятностных методов доступа — неопределённое время прохождения кадра, резко возрастающее при увеличении нагрузки на сеть, что ограничивает его применение в системах реального времени.

При детерминированном (deterministic) методе узлы получают доступ к среде в предопределенном порядке. Последовательность определяется контроллером сети, который может быть централизованным (его функции может выполнять, например, сервер) или/и распределенным (функции выполняются оборудовани­ем всех узлов). Основные типы: доступ с передачей маркера (token passing), при­меняемый в сетях ARCnet, Token Ring, FDDI; поллинг (polling) — опрос готов­ности, применяемый в больших машинах (mainframes) и технологии 100VG- AnyLAN. Основное преимущество метода — ограниченное время прохождения кадра, мало зависящее от нагрузки.

Сети с большой нагрузкой требуют более эффективных методов доступа. Один из способов повышения эффективности — перенос управления доступом от узлов в кабельные центры. При этом узел посылает кадр в коммуникационное устройство. Задача этого устройства — обеспечить прохождение кадра к адресату с оптимизацией общей производительности сети и обеспечением уровня качест­ва обслуживания, требуемого конкретным приложением.

 

15 Методы коммутации. Коммутация каналов.

Базовая сеть передачи данных (БСПД) обеспечивает информационный обмен между абонентами путем установления соединений, проходящих через узлы и линии связи (рис. 1). Важнейшая характеристика СПД – время доставки данных, которое зависит от структуры СПД, производительности узлов связи и пропускной способности линий связи, а также от способа организации каналов связи между взаимодействующими абонентами и способа передачи данных по каналам.

Информационный обмен между абонентами может осуществляться различными способами, которые можно разбить на две группы: непосредственную коммутацию и коммутацию с промежуточным накоплением.

Методы непосредственной коммутации устанавливают непосредственную связь между конечными пользователями через последовательность промежуточных узлов коммутации. При этом образуется единый тракт передачи, который закрепляется за сеансом связи и монополизируется им. При этом ни один ресурс этого тракта не может быть использован при организации сеансов других пользователей. Для организации тракта необходимо проведение специальной начальной фазы установки соединения. Представителем этой группы является метод коммутации каналов.

При промежуточном накоплении информация пользователя упаковывается в блоки данных, которые передаются от узла к узлу, запоминаются на них и затем, по мере освобождения ресурсов в направлении дальнейшего движения, отправляются дальше. При этом занятыми (и недоступными для других сеансов) оказываются только те ресурсы, которые задействуются в данный момент для передачи блока, остальные ресурсы тракта являются свободными для любых других передач. Сущность методов этой группы будет рассмотрена на примерах коммутации сообщений и пакетов.

Коммутация каналов – это последовательно-параллельный метод передачи данных с организацией параллельных трактов на уровне передачи информационных массивов с нулевым накоплением данных на узлах коммутации. Сети с коммутацией каналов организуются по принципу установления всего маршрута для передачи информации из последовательно соединенных каналов связи от отправителя к получателю.

Коммутация каналов обеспечивает выделение физического канала для прямой передачи данных между абонентами. В начальный момент отправитель генерирует запрос (вызов), содержащий адрес получателя. Этот запрос проходит по сети и на каждом узле коммутации отыскивает свободную линию передачи в направлении получателя. При ее наличии происходит физическое подключение нового этапа пути к уже cкоммутированному тракту и его удержание. Так поэтапно создается весь тракт передачи.

Системы коммутации могут быть полнодоступными и неполнодоступными в зависимости от того, с каждым ли абонентом может соединиться узел-отправитель или только с частью из них. На узлах коммутации может быть реализована одна из дисциплин обслуживания поступивших запросов:

· дисциплина с отказами;

· дисциплина с ожиданием;

· приоритетная дисциплина.

Первая дисциплина с отказами предполагает отказ от попытки установить соединение в том случае, если на очередном узле коммутации не может быть найдена хотя бы одна свободная линия в требуемом направлении. В этом случае узел формирует сигнал разъединения и посылает его в обратном направлении. Этот сигнал разрывает уже сформированный тракт, освобождает закрепленные ресурсы и уведомляет об этом факте отправителя. Всю процедуру соединения требуется начинать заново. Это свойство ограничивает применение дисциплины с отказами ввиду снижения эффективности использования сетевых ресурсов.

При реализации дисциплины с ожиданием в памяти узлов коммутации организуется очередь запросов в ожидании освобождения нужного канала связи. На время ожидания весь уже сформированный участок тракта остается в закрепленном состоянии и недоступен другим сеансам. В чистом виде эта дисциплина не может быть реализована, так как не существует бесконечно больших емкостей буферной памяти. При переполнении накопителя система коммутации выходит в режим работы с отказами.

Приоритетная дисциплина основана на ранжировании пользователей или каких либо сетевых ресурсов по приоритетам. Запрос от пользователя с более высоким приоритетом прерывает уже установленную связь менее приоритетных пользователей. Ввиду существенных организационных ограничений применение этой дисциплины весьма ограничено.

Процесс коммутации канала и передачи данных между абонентами СПД, изображенной на рис. 1, представлен временной диаграммой на рис. 2.а. Абонент ai инициирует установление связи с абонентом aj. Узел связи А, реагируя на адрес абонента aj, подключает соединение, в результате чего линия абонента ai коммутируется с линией, соединяющей узел А с узлом В. Затем процедура подключения соединения повторяется с узлами В, С и D, в результате чего между абонентами ai и aj коммутируется канал.

По окончании коммутации узел D (или абонент aj) посылает сигнал обратной связи (ответ), который проходит беспрепятственно по уже скоммутированному каналу. После получения ответа абонент aj начинает передавать данные в реальном масштабе времени (в режиме on-line). Время передачи данных зависит от длины передаваемого сообщения, пропускной способности канала (скорости передачи данных) и времени распространения сигнала по каналу. Значение U1 определяет время доставки сообщения.

При коммутации каналов различают схемы пространственной и временной коммутации.

Пространственная коммутация основана на физическом соединении линий входа и выхода с помощью специальных устройств – коммутаторов.

Рассмотрим случай коммутации любого из N входов и N выходов. На рис. 3 показан пример с N= 6. В этом случае коммутационная схема представляет собой квадратный коммутатор емкостью N N. В каждой точке коммутации, в которой пересекаются входящая и исходящая линии, может находиться полупроводниковый переключатель или металлический контакт, позволяющий установить соединение между любым заданным входом и любым заданным выходом единственно возможным способом. В рассматриваемом коммутаторе соединение между входом и выходом возможно всегда (при условии, что требуемый выход не был соединен ранее, т.е. не является занятым).

Коммутатор такого типа является неблокирующим. Его сложность характеризуется числом необходимых точек коммутации, которое обычно равно N2 и N2-N, если входы и выходы относятся к одним и тем же терминалам, между которыми должно быть установлено соединение. (В последнем случае терминал, соединенный с входящей линией 1, соединяется также и с исходящей линией i, . Таким образом, терминал может и посылать и принимать вызов). В более общем случае коммутатор может иметь вид матрицы размером N K. Очевидно, что если K больше или равно N, коммутатор будет неблокирующим. Однако при K меньшим чем N возможны блокировки. На рис. 4 показан пример коммутатора с N=8 и K=4, в котором установлены четыре соединения 1-2, 2-1, 3-3, и 4-4. Из этого примера видно, что здесь число выходов отличаются от числа входов. Таким образом, входы 5-8 оказываются заблокированы: ни к одной из выходных линий соединения от этих входов установлены быть не могут. При увеличении числа пользователей или подключенных линий соответственно растет размер и сложность коммутационной системы. Как только что отмечалось, сложность пространственного коммутатора обычно измеряется числом требуемых точек коммутации. Например, если необходимо коммутировать 100.000 каналов и воспользоваться для этой цели квадратным коммутатором, то для этого потребуется N2 =1010 точек коммутации.

Общий метод уменьшения этого числа точек коммутации при сохранении неблокирующих свойств состоит в переходе к звеньевым, или многоступенным (каскадным) схемам.

Схемы пространственной коммутации одинаково пригодны как для аналоговой, так и для цифровой передачи сообщений.

Более современными являются системы временной коммутации, которые пригодны только для цифровой передачи. Эти коммутаторы полностью аналогичны пространственным, и анализ неблокирующих свойств или блокировок выполняется в них точно таким же способом.

Для выполнения временной коммутации все соединения или сообщения, подлежащие коммутации, сначала должны быть дискретизированы в последовательности временных отсчетов, причем группа последовательных отсчетов, передаваемых по одной физической линии, должна составлять цикл (временной кадр).

Наиболее известен пример цифровой передачи телефонных сигналов с помощью импульсивно-кодовой модуляции (ИКМ). Для преобразования в цифровую форму каждый речевой сигнал должен быть подвергнут дискретизации с частотой 8000 отсчетов в секунду, или каждые 125 мкс. Таким образом, длина цикла составляет 125 мкс. Дискретные отсчеты обычно преобразуются в цифровую форму (квантуются) и представляются 8- разрядными двоичными числами. В результате типовой цифровой канал ИКМ требует пропускной способности 64 кбит/с. Отдельные цифровые каналы, в свою очередь, объединяются в общий поток.

В последних рекомендациях МККТТ ИКМ-передача заменена адаптивной дельта-модуляцией со скоростью 32 кбит/с, что позволяет почти удвоить число передаваемых речевых сигналов.

Широкое применение получили два формата объединения. Североамериканский стандарт, первоначально разработанный компанией AT&T в США и принятый также в Канаде и в Японии, предусматривает объединение 24 восьмиразрядных речевых каналов в поток со скоростью передачи 1,554 Мбит/с (вначале каждого цикла добавляется один разряд цикловой синхронизации, поэтому за 125-микросекундный цикл передается 24 8+1=193 разряда). Такая система передачи получила наименование Т1. Типовой цикл системы Т1 показан на рис. 5.

Каждое 8-разрядное слово в цифровом потоке с временным разделением называется также временным отсчетом, или канальным интервалом. Хотя первоначально формат Т1 был разработан для телефонии, т.е. для передачи речи, 24-канальный цикл может также использоваться для передачи любых других сигналов. Например, в этот формат естественно вписывается передача данных со скоростью 56 кбит/с (восьмой, или младший, разряд в каждом речевом канале Т1 через каждые пять циклов на шестой используется для сигнализации, поэтому при передаче данных со скоростью 56 кбит/с этот восьмой разряд просто игнорируется).

Международный стандарт, применяемый за пределами Северной Америки и Японии, предусматривает объединение 30 речевых каналов со скоростью передачи по 64 кбит/с и двух таких же каналов управления и сигнализации, в цифровой поток со скоростью передачи 2,048 Мбит/с. Эта система тоже может быть применена для передачи неречевых сигналов.

Каждый цикл при поступлении по входящей линии в систему коммутации, записывается в память. После этого коммутация выполняется просто путем считывания отдельных слов в любом желаемом (скоммутированном) порядке. Устройство, выполняющее указанную операцию, называется коммутатором канальных интервалов (ККИ). Пример ККИ показан на рис. 6. Цикл состоит из пяти канальных интервалов, из которых только два, X и Y считаются активными и связывающиеся друг с другом. На стороне входа данные пользователя X занимают канал 1, а данные пользователя Y – канал 3. После записи каждого цикла в память слово канала Y считывается или пе редается в канальном интервале X, а слово канала X считывается в канальном интервале Y. Возможны также и более сложные схемы работы. Узел коммутации должен обеспечивать взаимные соединения между каналами различных пучков линий. С помощью электронных контактов, установленных между групповыми трактами системы коммутации, возможна коммутация только одноименных каналов, имеющих совпадающие временные интервалы. Если в групповом тракте, куда должен быть направлен вызов, соответствующий временной интервал занят под передачу другого сообщения, то, несмотря на наличие в тракте свободных каналов, использующих другие временные интервалы, соединение не может быть установлено. Это приводит к дополнительным потерям вызовов, а на ступенях искания, где необходимо обеспечивать соединение каждого канала с каждым, применение такого способа коммутации невозможно.

Для обеспечения коммутации каждого входящего канала с каждым исходящим необходимо иметь возможность производить перестановку временных интервалов этих каналов. Перестановку временных интервалов можно осуществлять с помощью запоминающих устройств, устанавливаемых на входах и выходах групповых трактов. Для того чтобы осуществить перестановку каналов в любых временных интервалах, емкость памяти должна обеспечивать возможность задержки информации, поступающей по групповому тракту на время не менее одного периода квантования исходного речевого канала. Практически число ячеек памяти обычно берется равным числу временных каналов в групповом тракте.

Упрощенная структурная схема коммутации между двумя групповыми трактами приведена на рис. 7. Так как ячейки памяти, устанавливаемые на концах групповых трактов, предназначены для хранения информации, поступающей по каналам, условимся называть ее информационной памятью (ИП).

Кроме запоминающих устройств, хранящих информацию, для осуществления коммутации необходима другая группа запоминающих устройств для хранения адресов каналов и точек коммутации, которые необходимо включить при коммутации входов и выходов системы коммутации. Эту группу запоминающих устройств будем называть управляющей памятью (УП). На рис. 7. показаны три звена коммутации между двумя групповыми трактами iиjзвено А временной коммутации, осуществляемой с помощью ИПAi; звено В пространственной коммутации ПКBи звено С временной коммутации, осуществляемой с помощью ИПCj.

Управление процессом коммутации осуществляется с помощью устройств памяти управления УПАi, УПBи УПCj, в которых хранятся номера временных интервалов и адреса точек коммутации, используемых при коммутации каждого сообщения.

Принцип действия коммутационной схемы рассмотрим на примере соединения канала, занимающего 12-ю временную позицию в i -м групповом тракте с каналом, занимающим 17-ю временную позицию в j -м групповом тракте. Предположим также, что в коммутационной схеме для считывания с ИПА i и записи ИПс j имеется свободная 15-я временная позиция. Указанная выше информация о данном соединении записывается в ячейки памяти УПАi,УПВ и УПСj. Адрес 12-го канала i -го группового тракта записывается в 15-ю ячейку памяти УПАi , соответствующую временному интервалу, отведенному для считывания и записи информации в ИПА i и ИП C j при установлении данного соединения. В ячейку памяти УПB, соответствующую этому же 15-му временному интервалу, записывается в адрес пространственной точки коммутации, связывающей между собой групповые тракты i и j, участвующие в соединении УПCi, соответствующей номеру временного интервала исходящего канала в i -м временном тракте.

Процесс установления соединения во времени происходит следующим образом. В 12-й временной позиции кодовое слово, несущее информацию об амплитуде разговорного сигнала рассматриваемого канала i -го временного тракта, записывается в 12-ю ячейку ИПАi . Считывание с ячеек памяти ИПАi , управление точками коммутации ПКВи запись в ячейке ИПСi происходят под управлением памяти УП. Обращение к ячейкам памяти УПСi, УПBи УПAiпроисходят синхронно. В 15-м временном интервале, выбранном для коммутации между ИПАi и УПCi, считываются адреса, записанные в соответствующих ячейках УПCi, УПBи УПAi. В соответствии с этими адресами в 15-м временном интервале с 12-й ячейки ИПАiсчитывается информация, передается через точкуijПКВи записывается в 17-ю ячейку памяти ИП Сj, откуда она в 17-м временном интервале будет считана и передана по 17-му временному каналу i- го группового тракта.

К достоинствам метода коммутации каналов следует отнести возможность передачи данных и мультимедийного трафика в реальном масштабе времени. Недостатками являются низкая эффективность использования сетевых ресурсов и сложность установления связи (в ряде случаев отказ или недопустимо большое время установки физического соединения).

Коммутация сообщенийпроизводится путем передачи блока данных (сообщения), в который упаковывается вся информация, назначенная к передаче. Сообщение содержит заголовок, в котором содержится адресная (обязательно) и другая служебная информация, и собственно данные. Сообщение отправляется по маршруту, определяемому узлами сети. В заголовке сообщения указывается адрес абонента aj - получателя сообщения. Сообщение, генерируемое отправителем - абонентом ai, (рис. 2.б) полностью принимается узлом А и хранится в памяти узла. Узел A обрабатывает заголовок сообщения и определяет маршрут передачи сообщения, ведущий к узлу В. Узел В принимает сообщение, размещая его в памяти, а по окончании приема обрабатывает заголовок и выводит сообщение из памяти на линию связи, ведущую к следующему узлу. Процесс приема, обработки и передачи сообщения повторяется последовательно всеми узлами на маршруте от абонента ai до абонента aj. Значение Т2 определяет время доставки данных при коммутации сообщений. Это время в общем случае будет достаточно большим, так как сообщение не может быть передано дальше, пока полностью не будет принято и обработано текущим узлом.

Достоинствами метода коммутации сообщений являются: повышение эффективности использования сетевых ресурсов и отсутствие монополизации ресурсов тракта передачи, так как они сразу же высвобождаются после передачи и обработки сообщения. Главным недостатком метода является большое время передачи, особенно в протяженных трактах. Кроме того, на узлах коммутации необходимо наличие больших объемов буферной памяти для промежуточного хранения всех поступающих на узел сообщений.

Коммутация пакетов производится путем разбивки сообщения на пакеты - элементы сообщения, снабженные заголовком и имеющие фиксированную максимальную длину, - и последующей передачи пакетов по маршруту, определяемому узлами сети. Передача данных при коммутации пакетов происходит так же, как и при коммутации сообщений, но данные разделяются на последовательность пакетов 1, 2,...…, длина которых ограничена предельным значением, например, 1024 бит.

 

 

16 Методы коммутации. Коммутация пакетов

В ИВС коммутация пакетов - основной способ передачи данных. Это обусловлено отчасти тем, что коммутация пакетов приводит к малым задержкам при передаче данных через СПД, а также следующими обстоятельствами.

Во-первых, способ коммутации каналов требует, чтобы все соединительные линии, из которых формируется канал, имели одинаковую пропускную способность, что крайне ужесточает требования к структуре СПД. Коммутация сообщений и пакетов позволяет передавать данные по линиям связи с любой пропускной способностью.

Во-вторых, представление данных пакетами создает наилучшие условия для мультиплексирования потоков данных. На рис. 8 представлена временная диаграмма, иллюстрирующая принцип мультиплексирования потоков данных. На первых трех осях изображены потоки данных (пакетов), генерируемых абонентами a1, a2, a3. Двойная нумерация пакетов на рисунке означает номер абонента и номер пакета в потоке. Канал используется для обслуживания трех абонентов - путем разделения во времени, т.е. поочередного предоставления канала абонентам. Благодаря этому эффективно используются линии связи, соединяющие узлы связи и ЭВМ с СПД, и одна линия связи обеспечивает работу многих взаимодействующих абонентов. Экономичность коммутации пакетов несколько снижается из-за размножения заголовков, сопровождающих каждый пакет, но эти потери окупаются за счет эффекта мультиплексирования сильно пульсирующих потоков данных, характерных для ИВС.

В-третьих, малая длина пакетов позволяет выделять для промежуточного хранения передаваемых данных меньшую емкость памяти, чем требуется для сообщений. Кроме того, использование пакетов упрощает задачу управления потоками данных, поскольку для приема потока пакетов в узлах связи нужно резервировать меньшую память, чем для приема потока сообщений.

В-четвертых, надежность передачи данных по линиям связи невелика. Типичная линия связи обеспечивает передачу данных с вероятностью искажений 10-4... 10-6. Чем больше длина передаваемого сообщения, тем больше вероятность того, что оно будет искажено помехами. Пакеты, имея незначительную длину, в большей степени гарантированы от искажений, чем сообщения. К тому же искажение исключается путем перезапроса данных (метод автоматического запроса при ошибке - ARQ: Automatic ReQuest). Пакеты значительно лучше согласуются с механизмом перезапросов, чем сообщения, и обеспечивают наилучшее использование пропускной способности линии связи, работающей в условиях помех. Эти обстоятельства привели к использованию коммутации пакетов в качестве основного способа организации каналов связи в СПД ИВС.

Выбор длины пакетов производится исходя из размера сообщения с учетом влияния длины пакетов на время доставки данных, пропускную способность линий связи, емкость памяти и загрузку ЭВМ. Наиболее широко используются пакеты длиной 1024 бит (128 байт). При такой длине все управляющие сообщения и большинство сообщений, генерируемых в режиме диалоговой обработки, “вкладываются” в один пакет.

 

 

17 Беспроводные технологии: Стандарт 802.11 Wi-Fi

Wi-Fi - это современная и перспективная беспроводная технология, которая использует радиоканалы для передачи данных. Данная технология предполагает наличие точки доступа/маршрутизатора Wi-Fi (стандарты 802.11a/b/g/n), которая обеспечивает стабильный доступ к сети из некоторой области радиусом до 45 метров в помещении и 90 метров на открытом пространстве (радиус действия зависит от многих условий и в вашем случаем может меняться).

Основные стандарты Wi-Fi:

IEEE 802.11 - определяет набор протоколов для самых низких скоростей передачи данных и является базовым стандартом WLAN.

IEEE 802.11a - Протокол не совместим с 802.11b и несет в себе более высокие скорости передачи чем 11b. Использует частотные каналы в спектре 5GHz. Максимальная пропускная способность до 54Мбит/c.

IEEE 802.11b - стандарт использует более быстрые скорости передачи и вводит больше технологических ограничений. Использует частотные каналы в спектре 2.4GHz. Максимальная пропускная способность до 11Мбит/c.

IEEE 802.11g - стандарт использует скорости передачи данных эквивалентные 11а. Используются частотные каналы в спектре 2.4GHz. Протокол совместим с 11b. Максимальная пропускная способность до 54Мбит/c.

IEEE 802.11n - на данный момент это cамый передовой коммерческий Wi-Fi стандарт, который использует частотные каналы в спектрах 2.4GHz и 5GHz. Совместим с 11b/11a/11g. Максимальная пропускная способность до 300 Мбит/c.

Для более детального представления, привожу сравнительную таблицу стандартов беспроводной связи, в которой содержится подробная информация о таких технологиях как: Wi-Fi, WiMax, Bluetooth v 1.1, Bluetooth v 2.0, Bluetooth v 3.0, UWB, ZigBee, инфракрасный порт.

Сравнительная таблица беспроводных стандартов связи Wi-Fi, WiMax, Bluetooth v 1.1, Bluetooth v 2.0, Bluetooth v 3.0, UWB, ZigBee, инфракрасный порт.

Публичные хот-споты (hot spot - точка подключения к беспроводной сети WLAN, а если дословно то "горячее место", "горячая точка") часто встречаются в местах общественного пользования: аэропортах, вокзалах, гостиницах, ресторанах, кафе, магазинах, библиотеках. Подключиться к таким сетям можно свободно на территории заведения или недалеко от него. В некоторых требуется авторизация, при этом логин и пароль вам выдадут после того, как вы оплатите услуги этого заведения.

Преимущества Wi-Fi:

Долой провода..

Глобальная совместимость. Wi-Fi - это семейство глобальных стандартов (несмотря на некоторые ограничения, существующие в разных странах), поэтому по идее устройство, произведенное в США, должно прекрасно работать в странах СНГ. И наоборот.

Недостатки Wi-Fi:

Правовой аспект. В различных странах по разному подходят к использованию частотного диапазона и параметрам передатчиков/приемников беспроводного сигнала стандартов IEEE 802.11. В одних странах, к примеру, требуется регистрация всех Wi-Fi сетей, работающих вне помещений. В других налагается ограничение на используемые частоты или мощность передатчика.

В странах СНГ использование Wi-Fi без разрешения на использование частот от Государственной комиссии по радиочастотам (ГКРЧ) возможно для организации сети внутри зданий, закрытых складских помещений и производственных территорий. Если вы хотите связать радиоканалом два соседних дома, рекомендуется обратиться в вышеупомянутый надзорный орган.

Стабильность связи. Стандартные домашние Wi-Fi маршрутизаторы распространенных стандартов 802.11Ь или 802.11g имеют радиус действия порядка 40-50 метров в помещении и до 90 метров снаружи. Некоторые электронные устройства (микроволновка), погодные явления (дождь) ослабляют уровень сигнала. Также расстояние зависит от рабочей частоты и других факторов. Более детально узнать о факторах, которые влияют на беспроводную связь Wi-Fi вы можете здесь.

Перекрестные помехи. При большой плотности точек доступа могут возникнуть проблемы доступа к открытой точке доступа при наличии рядом хотспота, работающего на том же или соседнем канале и использующем шифрование.

Факторы производства. К сожалению, производители не всегда четко придерживаются стандартов, поэтому некоторые устройства могут работать нестабильно или на меньших скоростях.

Энергопотребление. Достаточно высокое потребление энергии, что уменьшает время жизни батарей и повышает температуру устройства.

Безопасность. Стандарт шифрования WEP, по-прежнему остается одним из популярных и относительно легко взламываемых, а более совершенный протокол WPA, к сожалению, не поддерживают многие старые точки доступа. Более надежным и совершенным на сегодня считается протокол WPA2.

Ограниченная функциональность. При передаче небольших пакетов данных к ним присоединяется большое количество служебной информации, что ухудшает качество связи. Поэтому Wi-Fi не рекомендуется использовать для работы в IP-телефонии, использующей протокол RTP: качество связи не гарантировано.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: