double arrow

Полосы равной толщины (интерференция от пластинки переменной толщины).


Кольца Ньютона

При освещении пленки (пластинки) с переменной толщиной параллельным пучком света на ее поверхности возникает система интерференционных полос. Каждая из полос возникает за счет отражения от мест пластинки, имеющих одинаковую толщину (в общем случае толщина пластинки может изменяться произвольно). Интерференционные полосы, возникающие в результате интерференции от мест одинаковой толщины, называютсяполосами равной толщины.Примером полос равной толщины

являются кольца Ньютона. Кольца Ньютона наблюдаются при отражении света от соприкасающихся друг с другом плоскопараллельной толстой стеклянной пластинки и плоско-выпуклой линзы с большим радиусом кривизны (рис. 4.5). Роль тонкой пленки, от поверхностей которой отражаются когерентные волны, играет воздушный зазор (c изменяющейся толщиной b) между пластиной и линзой. При нормальном падении света полосы равной толщины имеют вид концентрических окружностей, при наклонном падении – эллипсов.

Радиусы светлых и темных колец Ньютона найдем по формуле:

, m=1, 2, 3

Четным m соответствуют радиусы светлых колец, нечетным m – радиусы темных колец. Значению m = 1 соответствует r = 0, т.е. точка в месте касания пластинки и линзы. В этой точке наблюдается минимум интенсивности, обусловленный изменением фазы на p при отражении световой волны от пластинки.




Полосы равной толщины могут наблюдаться также в клинообразной пластинке. Тогда интерференционные полосы параллельны ребру клина.

Просветление оптики

Интерференция при отражении от тонких пленок лежит в основе просветления оптики. Прохождение света через каждую преломляющую поверхность линзы сопровождается отражением примерно 4 % падающего света. В сложных объективах такие отражения совершаются многократно, и суммарная потеря светового потока достигает заметной величины. Отражения от поверхностей линз приводят к возникновению бликов. В просветленной оптике для устранения отражения света на каждую свободную поверхность линзы наносится тонкая пленка вещества с показателем преломления иным, чем у линзы. Толщина пленки подбирается так, чтобы волны, отраженные от обеих ее поверхностей, погашали друг друга. Особенно хороший результат достигается, если показатель преломления пленки равен корню квадратному из показателя преломления линзы. При этом условии интенсивность обеих отраженных от поверхностей пленки волн одинакова.

Интерференция света в тонких пленках. Полосы равной толщины и равного наклона. Кольца Ньютона.

Интерференцию света по методу деления амплитуды во многих отношениях наблюдать проще, чем в опытах с делением волнового фронта. Один из способов, использующих такой метод, – опыт Поля. В опыте Поля свет от источника S отражается двумя поверхностями тонкой прозрачной плоскопараллельной пластинки (рис. 8.7). В любую точку P, находящуюся с той же стороны от пластинки, что и источник, приходят два луча. Эти лучи образуют интерференционную картину. Рис. 8.7 Для определения вида полос можно представить себе, что лучи выходят из мнимых изображений S1 и S2 источника S, создаваемых поверхностями пластинки. На удаленном экране, расположенном параллельно пластинке, интерференционные полосы имеют вид концентрических колец с центрами на перпендикуляре к пластинке, проходящем через источник S. Этот опыт предъявляет менее жесткие требования к размерам источника S, чем рассмотренные выше опыты. Поэтому можно в качестве S применить ртутную лампу без вспомогательного экрана с малым отверстием, что обеспечивает значительный световой поток. С помощью листочка слюды (толщиной 0,03 – 0,05 мм) можно получить яркую интерференционную картину прямо на потолке и на стенах аудитории. Чем тоньше пластинка, тем крупнее масштаб интерференционной картины, т.е. больше расстояние между полосами. Полосы равного наклона Особенно важен частный случай интерференции света, отраженного двумя поверхностями плоскопараллельной пластинки, когда точка наблюдения Pнаходится в бесконечности, т.е. наблюдение ведется либо глазом, аккомодированным на бесконечность, либо на экране, расположенном в фокальной плоскости собирающей линзы (рис. 8.8). Рис. 8.8 В этом случае оба луча, идущие от S к P, порождены одним падающим лучом и после отражения от передней и задней поверхностей пластинки параллельны друг другу. Оптическая разность хода между ними в точке P такая же, как на линии DC: . Здесь n – показатель преломления материала пластинки. Предполагается, что над пластинкой находится воздух, т.е. . Так как , (h – толщина пластинки, и – углы падения и преломления на верхней грани; ), то для разности хода получаем . Следует также учесть, что при отражении волны от верхней поверхности пластинки в соответствии с формулами Френеля ее фаза изменяется на π. Поэтому разность фаз δ складываемых волн в точке P равна: , где – длина волны в вакууме. В соответствии с последней формулой светлые полосы расположены в местах, для которых , где mпорядок интерференции. Полоса, соответствующая данному порядку интерференции, обусловлена светом, падающим на пластинку под вполне определенным углом α. Поэтому такие полосы называют интерференционными полосами равного наклона. Если ось объектива расположена перпендикулярно пластинке, полосы имеют вид концентрических колец с центром в фокусе, причем в центре картины порядок интерференции максимален. Полосы равного наклона можно получить не только в отраженном свете, но и в свете, прошедшем сквозь пластинку. В этом случае один из лучей проходит прямо, а другой – после двух отражений на внутренней стороне пластинки. Однако видимость полос при этом низкая. Для наблюдения полос равного наклона вместо плоскопараллельной пластинки удобно использовать интерферометр Майкельсона (рис. 8.9). Рассмотрим схему интерферометра Майкельсона: з1 и з2 – зеркала. Полупрозрачное зеркало посеребрено и делит луч на две части – луч 1 и 2. Луч 1, отражаясь от з1 и проходя , дает , а луч 2, отражаясь от з2 и далее от , дает . Пластинки и одинаковы по размерам. ставится для компенсации разности хода второго луча. Лучи и когерентны и интерферируют. Рис. 8.9 Интерференция от клина. Полосы равной толщины Мы рассмотрели интерференционные опыты, в которых деление амплитуды световой волны от источника происходило в результате частичного отражения на поверхностях плоскопараллельной пластинки. Локализованные полосы при протяженном источнике можно наблюдать и в других условиях. Оказывается, что для достаточно тонкой пластинки или пленки (поверхности которой не обязательно должны быть параллельными и вообще плоскими) можно наблюдать интерференционную картину, локализованную вблизи отражающей поверхности. Возникающие при этих условиях полосы называютполосами равной толщины. В белом свете интерференционные полосы окрашены. Поэтому такое явление называют цветами тонких пленок. Его легко наблюдать на мыльных пузырях, на тонких пленках масла или бензина, плавающих на поверхности воды, на пленках окислов, возникающих на поверхности металлов при закалке, и т.п. Рассмотрим интерференционную картину, получаемую от пластинок переменной толщины (от клина). Рис. 8.10 Направления распространения световой волны, отраженной от верхней и нижней границы клина, не совпадают. Отраженные и преломленные лучи встречаются, поэтому интерференционную картину при отражении от клина можно наблюдать и без использования линзы, если поместить экран в плоскость точек пересечения лучей (хрусталик глаза помещают в нужную плоскость). Интерференция будет наблюдаться только во 2-й области клина, так как в 1-й области оптическая разность хода будет больше длины когерентности. Результат интерференции в точках и экрана определяется по известной формуле , подставляя в неё толщину пленки в месте падения луча ( или ). Свет обязательно должен быть параллельным ( ): если одновременно будут изменяться два параметра b и α, то устойчивой интерференционной картины не будет. Поскольку разность хода лучей, отразившихся от различных участков клина, будет неодинаковой, освещенность экрана будет неравномерной, на экране будут темные и светлые полосы (или цветные при освещении белым светом, как показано на рис. 8.11). Каждая из таких полос возникает в результате отражения от участков клина с одинаковой толщиной, поэтому их называют полосами равной толщины. Рис. 8.11 Кольца Ньютона На рис. 8.12 изображена оправа, в которой зажаты две стеклянные пластины. Одна из них слегка выпуклая, так что пластины касаются друг друга в какой-то точке. И в этой точке наблюдается нечто странное: вокруг нее возникают кольца. В центре они почти не окрашены, чуть дальше переливаются всеми цветами радуги, а к краю теряют насыщенность цветов, блекнут и исчезают. Так выглядит эксперимент, в XVII веке положивший начало современной оптике. Ньютон подробно исследовал это явление, обнаружил закономерности в расположении и окраске колец, а также объяснил их на основе корпускулярной теории света. Кольцевые полосы равной толщины, наблюдаемые в воздушном зазоре между соприкасающимися выпуклой сферической поверхностью линзы малой кривизны и плоской поверхностью стекла (рис. 8.13), называют кольцами Ньютона.





Рис. 8.12 Рис. 8.13

Общий центр колец расположен в точке касания. В отраженном свете центр темный, так как при толщине воздушной прослойки, на много меньшей, чем длина волны , разность фаз интерферирующих волн обусловлена различием в условиях отражения на двух поверхностях и близка к π. Толщинаhвоздушного зазора связана с расстоянием r до точки касания (рис. 8.13):

.

Здесь использовано условие . При наблюдении по нормали темные полосы, как уже отмечалось, соответствуют толщине , поэтому для радиуса m-го темного кольца получаем

(m = 0, 1, 2, …).

Если линзу постепенно отодвигать от поверхности стекла, то интерференционные кольца будут стягиваться к центру. При увеличении расстояния на картина принимает прежний вид, так как место каждого кольца будет занято кольцом следующего порядка. С помощью колец Ньютона, как и в опыте Юнга, можно сравнительно простыми средствами приближенно определить длину волны света.

Полосы равной толщины можно наблюдать и с помощью интерферометра Майкельсона, если одно из зеркал з1 или з2 (рис. 8.9) отклонить на небольшой угол.

Итак,полосы равного наклонаполучаются при освещении пластинки постоянной толщины ( ) рассеянным светом, в котором содержатся лучи разных направлений.Полосы равной толщинынаблюдаются при освещении пластинки переменной толщины (клина) ( ) параллельным пучком света. Полосы равной толщины локализованы вблизи пластинки.

Применение интерференции света.

Явление интерференции обусловлено волновой природой света; его количественные закономерности зависят от длины волны. Поэтому это явление применяется для подтверждения волновой природы света и для измерения длин волн (интерференционная спектроскопия).

Явление интерференции применяется также для улучшения качества оптических приборов (просветление оптики) и получения высокоотражающих покрытий. Прохожде­ние света через каждую преломляющую поверхность линзы, например через границу стекло — воздух, сопровождается отражением ≈4% падающего потока (при показа­теле преломления стекла ≈1,5). Так как современные объективы содержат большое количество линз, то число отражений в них велико, а поэтому велики и потери светового потока.

Для устранения недостатков осуществляют так называемое просветле­ние оптики. Для этого на свободные поверхности линз наносят тонкие пленки с показа­телем преломления, меньшим, чем у материала линзы. Если оптическая толщина пленки равна λ0/4, то в результате интерференции наблюдается гашение отраженных лучей. Так как добиться одновременного гашения для всех длин волн невозможно, то это обычно делается для наиболее восприимчивой глазом длины волны 0,55 мкм. Поэтому объективы с просветленной оптикой имеют синевато-красный оттенок.

Создание высокоотражающих покрытий стало возможным лишь на основе многолучевой интерференции. В отличие от двухлучевой интерференции многолучевая интерференция возникает при наложении большого числа когерентных световых пучков.

Многолучевую интерференцию можно осуществить в многослойной системе чередующихся пленок с разными показателями преломления (но одинаковой оптической толщиной, равной λ0/4), нанесенных на отражающую поверхность. Например, система из семи пленок для области 0,5 мкм дает коэффициент отражения 96% (при коэффициенте пропускания 3,5% и коэффициенте поглощения <0,5%). Подобные отражатели применяются в лазерной технике, а также используются для создания интерференционных светофильтров (узкополосных оптических фильтров).

Явление интерференции также применяется в очень точных измерительных прибо­рах, называемыхинтерферометрами. Все интерферометры основаны на одном и том же принципе и различаются лишь конструкционно. Интерферометр можно использовать для сверхточного (порядка 10-7 м) определения размеров изделий (измерения длины тел, длины волны света, изменения длины тела при изменении температуры (интерференционный дилатометр).

Интерферометры — очень чувствительные оптические приборы, позволяющие определять незначительные изменения показателя преломления прозрачных тел (газов, жидких и твердых тел) в зависимости от давления, температуры, примесей и т. д., измеряются весьма малые концентрации примесей в газах и жидкостях. Использование таких точных оптических приборов позволит технологически контролировать качество питьевой воды.

Микроинтерферометр (комбинация интерфе­рометра и микроскопа), служащего для контроля чистоты обработки поверхности. С помощью интерференционных методов проверяется качество шлифовки линз и зеркал, что очень важно при изготовлении оптических приборов, используемых также и в строительной технике. Интерферометры позволяют проводить измерения углов, исследования быстропротекающих процессов, обтекающем летательные аппараты и т.д.

С помощью интерферометров можно измерить коэффициенты линейного расширения твердых тел, что весьма является важным в связи с созданием новых строительных материалов и новых технологий получения металлопластмассовых и пластиковых строительных изделий. Интерферометры позволяют контролировать качество шлифовки поверхностей. Если на поверхности имеется царапина или вмятина, то это приводит к искривлению интерференционных полос. По характеру искривления полос можно судить о глубине царапины, такие исследования поверхности новых строительных материалов для новейших строительных технологий является важным.







Сейчас читают про: