Перевод чисел из двоичной системы счисления в восьмеричную и шестнадцатеричную системы, обратный перевод

Десятичная Двоичная Шестнадцатеричная
     
     
     
     
     
     
     
     
     
     
    A
    B
    C
    D
    E
    F

 

Пусть требуется перевести двоичное число 101011011001101101111001010110010112 в восьмеричную систему счисления. Для этого следует разбить это двоичное число на триады, начиная с младшего бита (МБ). Получим:

010 101 101 100 110 110 111 100 101 011 001 0112

Если старшая триада не заполнена до конца, следует дописать в ее старшие разряды нули, как в нашем случае. После этого необходимо заменить двоичные триады, начиная с младшей, на числа, равные им в восьмеричной системе:

2 5 5 4 6 6 7 4 5 3 1 38

Таким образом,

101011011001101101111001010110010112=2554667453138

Аналогично поступаем при переводе чисел из двоичной системы счисления в шестнадцатеричную, но разбиение двоичного числа производим на тетрады. Для примера будем использовать то же двоичное число, что и при переводе в восьмеричную систему счисления:

0101 0110 1100 1101 1011 1100 1010 1100 10112

Заменяя двоичные тетрады на их шестнадцатеричные значения, получим искомое шестнадцатеричное число:

101011011001101101111001010110010112=56CDBCACB16

Обратный перевод из восьмеричной в двоичную делается по аналогии:

достаточно каждую цифру этого числа заменить двоичной триадой (три разряда) в соответствии с таблицей (если нужно, слева дописывается дополнительный ноль).

Пример:

734,468=111011100,1001102

Все шестнадцатеричные цифры (от 0 до F) можно записать при помощи четырех двоичных разрядов (тетрады) (см. таблицу выше).

Пример:

A0,F816=10100000,111110002

 

Алгебра логики. Таблицы истинности для основных функций: отрицание,.конъюнкция, дизъюнкция, равнозначность, неравнозначность, импликация, И-НЕ (штрих Шеффера), ИЛИ-НЕ (стрелка Пирса).

Математическая логика – это наука о формах и способах мышления и их математическом представлении.

Мышление основывается на понятиях, высказываниях и умозаключениях.

Понятие объединяет совокупность объектов, обладающими некоторыми существенными признаками, которые отличают их от других объектов. Например, понятие «звезда» объединяет множество светящихся газовых шаров. Объекты, соответствующие одному понятию, образуют множество.

Понятие имеет две характеристики:

1) содержание;

2) объем.

Содержание понятия – это совокупность отличительных признаков объекта. Например, содержание понятия «человек» можно раскрыть так: «Общественное существо, обладающее сознанием и разумом».

Объем понятия – количество объектов, объединяющих понятие (пример: «человек» определяется численностью людей, живущих в мире)

Высказывание (суждение, утверждение) – это повествовательное предложение, в котором утверждаются или отрицаются свойства реальных предметов и отношения между ними. Поэтому высказывание может быть истинным или ложным.

Истинным называется высказывание, в котором связь понятий правильно отражает свойства и отношения реальных вещей, например: «Москва – столица России». Истинность высказывания кодируется единицей (1) и имеет значение «истина».

Ложным высказывание будет в том случае, когда оно не соответствует реальной действительности, например: «Париж – столица США». Ложность высказывания кодируется нулем (0) и имеет значение «ложь».

Обычно высказывания обозначаются логическими переменными – заглавными латинскими буквами с индексом или без, например, A = «Сегодня идет дождь». Логические переменные принимают только два значения 0 и 1.

Умозаключение позволяет из известных фактов (истинных высказываний) получать новые факты. Например, из факта «Все углы треугольника равны» следует истинность высказывания «Этот треугольник равносторонний».

Высказывания и логические операции над ними образуют алгебру высказываний (булеву алгебру), предложенную английским математиком Джорджем Булем.

Основные логические операции над высказываниями, используемыми в ЭВМ, включают отрицание, конъюнкцию, дизъюнкции, стрелку Пирса и штрих Шеффера. Рассмотрим эти логические операции.

1. Отрицание (обозначается также ØX, ~X).

Отрицание (NOT, читается «не X») – это высказывание, которое истинно, если X ложно, и ложно, если X истинно.

2. Конъюнкция XÙY (X&Y, XY).

Конъюнкция XY (AND, логическое умножение, «X и Y») – это высказывание, которое истинно только в том случае, если X истинно и Y истинно.

3. Дизъюнкция X+Y (XÚY).

Дизъюнкция X+Y (OR, логическая сумма, «X или Y или оба») – это высказывание, которое ложно только в том случае, если X ложно и Y ложно.

4. Стрелка Пирса X ¯ Y.

Стрелка Пирса X ¯ Y (NOR (NOT OR), ИЛИ-НЕ) – это высказывание, которое истинно только в том случае, если X ложно и Y ложно.

5. Штрих Шеффера X | Y.

Штрих Шеффера X | Y (NAND (NOT AND), И-НЕ) – это высказывание, которое ложно только в том случае, если X истинно и Y истинно.

6. Равнозначность X↔Y

Равнозначность X↔Y - если на входах одинаковые переменные, то функция равна ‘1’.

7. Неравнозначность X⊕Y

Неравнозначность – исключение ИЛИ, сложение по модулю

 

X Y XÙY X + Y X ¯ Y X | Y X↔Y X⊕Y
                 
                 
                 
                 

 

 



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: