Характеристика типов архей

1. Crenarchaeota (Креноархеоты) — термофилы, термоацидофилы, серные анаэробные бактерии Включает 28 родов, относящихся к одному классу – Thermoprotei. Окраска по Граму: отрицательная. Морфология клеток у них разнообразна – палочки (Thermoproteus), нити, кокки (Desulfococcus, Sulfolobus), дисковидные клетки, подвижные либо неподвижные. Физиологические группы: хемоавтотрофы, хемогетеротрофы. В основном отдел включает серозависимые прокариоты. В анаэробных условиях восстанавливают элементарную серу (S0) до сероводорода. В аэробных условиях окисляют сероводород или S0 до серной кислоты. Отношение к кислороду: Строгие анаэробы, факультативные анаэробы, аэробы. Отношение к температуре: в основном гипертермофилы. Способны расти при температурах, в зависимости от вида, в интервале 70-133С. Основной тип местообитаний – морские гидротермальные экосистемы. Характерные представители: Thermoproteus, Sulfolobus (кокки неправильной угловатой формы), Desulfococcus.

2. Euryarchaeota (Эвриархеоты) — метаногенные и галофильные археи Эти организмы распространены повсеместно. Некоторые формы являются экстремально термофильными и живут около "черных курильщиков", Это, например, Pyrococcus furiosus ("яростные огненные шарики"). "Шарики" развиваются при отсутствии молекулярного кислорода за счет использования органического вещества при температурах 70-103°С. Однако представители эвриархеот обнаружены и в арктической тундре и даже Антарктиде. К эвриархеотам относится обширная группа метанобразующих архей. Биологическое образование метана осуществляется только археями. Основным путем образования метана является окисление молекулярного водорода углекислотой - "карбонатное дыхание":

В некоторых случаях могут быть использованы соли муравьиной и уксусной кислот, метиловый спирт и метиламины. Таким образом эти археи получают необходимую им энергию. Среди метанобразующих архей есть формы палочковидные, кокки (шарики), спиральные формы, иногда - организм образован одной клеткой, иногда многими. Строение и состав клеточных стенок очень варьируют. Метанобразующие археи широко распространены, 1,0-1,5% углерода, участвующего в круговороте углерода в биосфере, проходит через стадию метана. При образовании метана может быть использован водород вулканического происхождения. Существуют экстремально термофильные формы, развивающиеся в зонах горячих источников. Это, например, Methanothermus fervidus, растущий при температурах 65-97°С. Образование метана происходит в осадках морей и пресноводных водоемов, болотах, почвах тундры и рисовых полей. Метанобразующие археи входят в состав кишечной микрофлоры, в частности они развиваются в отделе желудка - рубце жвачных животных. Накопление метана, хотя и незначительное, отмечено и в кишечнике человека. Метанобразующие бактерии интенсивно синтезируют витамин В12 и обеспечивают им своих хозяев. Метанобразующие бактерии являются внутриклеточными симбионтами некоторых простейших, особенно развивающихся при отсутствии молекулярного кислорода. Метанобразующие археи могут приносить практическую пользу. Так, существуют методы утилизации органических отходов в так называемых метантенках. В метантенках при высокой температуре и отсутствии молекулярного кислорода происходит сбраживание органических веществ разнообразной микрофлорой, в результате чего образуются водород и углекислота, которые и используются археями при образовании метана. Благодаря высокой температуре процессы идут с высокой интенсивностью. В литературе сообщалось, что от трупа лошади, помещенного в такой метантенк, через неделю остался один скелет. Были сконструированы также установки для получения горючего газа - метана из соломы, что, как предполагают, может обеспечить газом небольшие сельскохозяйственные поселения. Экстремально галофильные, способные к росту в насыщенных солевых растворах археи образуют самостоятельную группу весьма своеобразных организмов, к которым относятся представители родов Halobacterium, Halococcus, Natronobacterium, Natronococcus и некоторых других. Они развиваются при концентрациях солей, превышающих 250-300 г/л. Natronobacterium и Natronococcus, кроме того, предпочитают щелочные водоемы с крайне высокими значениями рН. Внутриклеточная солевая концентрация у галофилов высока, главным образом за счет накопления ионов К+. Их ферменты работают при высоких солевых концентрациях, при которых аналогичные ферменты других организмов теряют активность. Галофилы существуют за счет использования органических соединений, они могут расти в присутствии молекулярного кислорода и без него. При отсутствии молекулярного кислорода и наличии света у них происходит образование так называемых пурпурных или фиолетовых мембран - это участки поверхностной мембраны клетки, содержащие пигмент родопсин, аналогичный родопсину человеческого глаза. В пурпурных мембранах за счет энергии света происходит синтез АТФ (аденозинтрифосфата), являющегося основным носителем энергии в клетках живых организмов. Эта энергия может быть использована археями для поддержания жизни, хотя существовать исключительно за счет световой энергии они не могут. Клетки некоторых галофилов содержат также другие типы родопсина - сенсорный родопсин I и II, входящий в состав рецептора света и обеспечивающий способность этих организмов при движении определенным образом ориентироваться в отношении источника света. Клетки галофилов обычно содержат также красные каротиноидные пигменты, при их массовом развитии субстрат (соль, скопления органики и т.п.) окрашивается в красный цвет. Галофилы населяют соляные озера, например Мертвое море. Мертвое море - озеро на территории Израиля и Иордании, вода которого насыщена солями. Думали, что в нем нет никакой жизни, но оказалось, что Мертвое море населено археями. Археи обнаружены в соляных озерах США, Кении, в солярнах (мелких водоемах для выпаривания морской воды и получения соли). Соляные озера на юге России тоже заселены галофильными археями. Особую группу эвриархеот составляют кислотолюбивые археи, использующие для жизни органические соединения. Сюда относятся так называемые термоплазмы, развивающиеся в горячих и кислых вулканических источниках и лишенные клеточной стенки. Окружающая их клетки цитоплазматическая мембрана, как очевидно, обладает удивительной устойчивостью. Еще более кислотолюбив Picrophilus, что в переводе означает кислотолюб. Эта архея растет только при значениях рН ниже 2,2 и даже при рН около 0. Развивается она при температуре 50-55°С. Клетки этой археи, кроме цитоплазматической мембраны, окружены структурированным слоем белковых субъединиц, что, характерно для многих архей. Нужно иметь в виду, что раствор, в котором живут эти организмы, попав на кожу человека, неизбежно вызовет сильный ожог, а на платье образует дырку. Изучение архей приносит все новые свидетельства удивительной способности живых организмов приспосабливаться к существованию в условиях, казалось бы для жизни непригодных.

3. Nanoarchaeota (Наноархеоты) — единственный известный представитель Nanoarchaeum equitans; Наноархео́ты[1] — тип архей, выделенный в 2002 году. Некоторое время единственным видом, входящим в состав этого типа, был Nanoarchaeum equitans. Его представители могут развиваться только в сокультуре с хемолитоавтотрофными археями одного из видов рода Ignicoccus [en], что является уникальным явлением для архей. Обычно отношения двух видов архей рассматривают как симбиотические, однако существуют свидетельства и в пользу паразитизма Nanoarchaeum на Ignicoccus. В 2013 году появилось сообщение об обнаружении второго вида наноархеот — Nanobsidianus stetteri Наноархеотынаселяют различные среды обитания, помимо морских гидротермальных источников. В ходе изучения праймеров к гену 16S рРНК N. equitans было показано, что данный вид широко распространён в наземных горячих источниках, а также мезофильных местообитаниях с повышенной солёностью. Последовательности генов рРНК N. equitans были также обнаружены в образцах воды из эвфотической зоны, взятых на значительном расстоянии от гидротермальных источников. Таким образом, наноархеоты могут обитать при различных температурах и в геохимически разнообразных средах. Несмотря на недавнее открытие Nanobsidianus stetteri, Nanoarchaeum equitans по-прежнему остаётся единственным видом наноархеот, который удаётся выращивать в культуре (совместно с клетками Ignicoccus).

4. Lokiarchaeota (Локиархеоты) - предполагаемый тип архей. Тип был описан в 2015 году на основании генома, собранного при метагеномном анализе образцов, полученных рядом с гидротермальными источниками в Атлантическом океане на глубине 2,35 км. Филогенетический анализ показал, что Lokiarchaeota и эукариоты образуют монофилетический таксон. Геном Lokiarchaeota содержит около 5400 генов, кодирующих белки. Среди них были обнаружены гены, близкие к генам эукариот. В частности, гены, кодирующие белки, отвечающие за изменение формы клеточной мембраны, определение формы клетки и динамический цитоскелет. Таким образом, находит своё подтверждение эоцитная гипотеза, согласно которой эукариоты представляют собой группу внутри архей, приобретшую митохондрии.

5. Thorarchaeota (Торархеоты) — предполагаемый тип архей, выделение которого было предложено в 2016 году на основании метагеномного анализа донных осадков из эстуарной зоны реки White Oak River в Северной Каролине (США). Представители группы способны выделять ацетат при деградации белков и, по-видимому, восстанавливать элементарную серу и тиосульфат. Филогенетический анализ указывает на древность и широкое распространение архей типа. Название группы отражает близость её к другой древней группе архей — Lokiarchaeota.

Рис 1: Кренархеоты

Рис 2:Эвриархеоты


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: