Особенности строения X и Y хромосом. Наследование признаков, сцепленных с полом и зависимых от пола. 1 страница

Так, у человека около 60 генов наследуются сцеплено с Х-хромосомой, в том числе гены, обусловливающие такие заболевания, как гемофилия, цветовая слепота, мускульная дистрофия и др. Однако установлено, что Y-хромосомы не во всех случаях генетически инертны и их функции не сводят только к роли синаптических партнеров при конъюгации с Х-хромосомы во время мейоза. Известно небольшое число примеров, когда в Y-хромосоме локализованы гены, не имеющие аллелей в Х-хромосоме. Например, у живородящей рыбки лебистуса (гуппи) один из признаков - темное пятно спиной плавнике - обусловлено геном, локализованными в Y-хромосоме, и потому передается только от отца к сыну. Такие признаки называются голандрическими, т.е. наследуемыми исключительно по мужской линии. У человека, таким образом, наследуется локализованный в Y-хромосоме ген SPY, ответственный за развитие мужской потенции, а также гены, контролирующий размер зубов, развитие кожи перепонки между пальцами ног, волосатость мочек ушей (ихтиоз) и др. Кроме генов, аллели которых локализованы только либо в Х-, либо в Y-хромосоме, имеются гены, общие для обеих половых хромосом. Такие гены у одного и того же вида наследуется как сцепленные то с Х-, то с Y-хромосомой и проявляются в зависимости от того, в какой из них находится доминантный аллель, а какой - рецессивный. У-хромосома отличается от Х-хромосомы отсутствием некоторых аллелей (например, аллеля свертываемости крови). Y хромосома она мелкая то есть акроцентрик, а Х хромосома средняя по размеру субметацентрик. Сцепленное с полом наследование. Анализ наследования признака окраски глаз у дрозофилы в лаборатории Т. Моргана выявил некоторые особенности, заставившие выделить в качестве отдельного типа наследования признаков сцепленное с полом наследование. Зависимость результатов эксперимента от того, кто из родителей являлся носителем доминантного варианта признака, позволила высказать предложение, что ген определяющий окраску глаз у дрозофилы, расположен в Х-хромосоме и не имеет гомолога в Y-хромосоме. Все особенности сцепленного с полом наследования объясняются дозой соответствующих генов у представителя разного – гомо- и гетерогаметного пола. Гомогаметный пол несет двойную дозу генов, расположенных в Х-хромосоме. Развитие соответствующих признаков у гетерозигот (ХАХа) зависит от характера взаимодействия между аллельными генами. Гетерогаметный пол имеет одну Х-хромосому (Х0 или XY). У некоторых видов Y-хромосома генетически инертна, у других она содержит некоторое количество структурных генов, часть из которых гомологична генам Х-хромосомы. Гены негомологичных участков Х- и Y-хромосом (или единственной Х-хромосомы) у гетерогаметного пола находятся в гемизиготном состоянии. Они представлены единственной дозой: ХАY, XaY, XYB. Формирование таких признаков у гетерогаметного пола определяется тем, какой аллель данного гена присутствует в генотипе организма. Характер наследования сцепленных с полом признаков в ряду поколений зависит от того, в какой хромосоме находится соответствующий ген. В связи с этим различают Х-сцепленное и Y-сцепленное (голандрическое) наследование.

31.Фенотипическая изменчивость. Модификации и их характеристики. Нормы реакции. Значение фенотипической изменчивости. Фенотипические изменения, возникающие на основе одного и того же генотипа в различных условиях ее реализации, наз. модификациями. Примеры модификации: содержание жира в молоке животных или массы тела в зависимости от их питания, количество эритроцитов в крови, в зависимости от парциального давления кислорода в воздухе, и др. Т. к. фенотипическое проявление наследственной информации может модифицироваться условиями среды, в генотипе организма запрограммировано лишь возможность их формирования в определенных пределах, называемых нормой реакции. Норма реакции представляет собой пределы модификационной изменчивости признака, допускаемой при данном генотипе. Фенотипическое проявление информации, заключенный в генотипе, хар. показателями пенетрантности и экспрессивности. Пенетрантность отражает частоту фенотипического проявления имеющейся в генотипе информации. Она соответствует проценту особей, у кот. доминантный аллель гена проявился в признак, по отношению ко всем носителям этого аллеля.Экспрессивность также явл. показателем, характеризующим фенотипическое проявление наследственной информации. Она хар. степень выраженности признака и зав. от дозы соответствующего аллеля гена при моногенном наследовании или от суммарной дозы доминантных аллелей генов при полигенном наследии и от факторов среды. Практическое использование закономерностей модификационной изменчивости имеет большое значение в растениеводстве и животноводстве, так как позволяет предвидеть и заранее планировать максимальное использование возможностей каждого сорта растений и породы животных (например, индивидуальные показатели достаточного количества света для каждого растения). Создание заведомо известных оптимальных условий для реализации генотипа обеспечивает их высокую продуктивность. Также это позволяет целесообразно использовать врожденные способности ребенка и развивать их с детства — в этом состоит задача психологов и педагогов, которые еще в школьном возрасте пытаются определить склонности детей и их способности к той или иной профессиональной деятельности, увеличивая в пределах нормы реакции уровень реализации генетически детерминированных способностей детей.

32.Комбинативная изменчивость и ее механизмы. Медицинское и эволюционное значение рекомбинации наследственного материала. Комбинативная изменчивость возникает при свободных скрещиваниях в популяциях или при искусственной гибридизации. В результате рождаются особи с новыми сочетаниями признаков и свойств, которые отсутствовали у родителей. Комбинативная изменчивость, проявляющаяся в генотипическом разнообразии особей, повышает выживаемость вида в изменяющихся условиях его существования. Механизмы комбинативной изменчивости: 1) независимое расхождение хромосом в анафазу І мейоза. 2) Кроссенговер 3) Случайное слияние гамет 4) Случайный подбор родительских пар. Эффективность рекомбинации наследственного материала, возрастающая у эукариот благодаря его хромосомной организации, существенно увеличивает степень комбинативной изменчивости у данных организмов. Это является важным эволюционным фактором, обеспечивающим разнообразный исходный материал для естественного отбора.

33.Мутационная изменчивость. Характеристика мутаций. Понятие о генных и хромосомных болезнях. Биологические антимутационные механизмы. Мутационная изменчивость - Это изменения ДНК клетки (изменение строения и количества хромосом). Возникают под действием ультрафиолета, радиации (рентгеновских лучей) и т.п. Передаются по наследству, служат материалом для естественного отбора (мутационный процесс – одна из движущих сил эволюции). Мутации – это изменения в ДНК клетки. Возникают под действием ультрафиолета, радиации (рентгеновских лучей) и т.п. Передаются по наследству, служат материалом для естественного отбора. отличия от модификаций Генные мутации – изменение строения одного гена. Это изменение в последовательности нуклеотидов: выпадение, вставка, замена и т.п. Например, замена А на Т. Причины – нарушения при удвоении (репликации) ДНК. Примеры: серповидноклеточная анемия, фенилкетонурия. Хромосомные мутации – изменение строения хромосом: выпадение участка, удвоение участка, поворот участка на 180 градусов, перенос участка на другую (негомологичную) хромосому и т.п. Причины – нарушения при кроссинговере. Пример: синдром кошачьего крика. Геномные мутации – изменение количества хромосом. Причины – нарушения при расхождении хромосом.

Полиплоидия – кратные изменения (в несколько раз, например, 12 → 24). У животных не встречается, у растений приводит к увеличению размера. Анеуплоидия – изменения на одну-две хромосомы. Например, одна лишняя двадцать первая хромосома приводит к синдрому Дауна (при этом общее количество хромосом – 47). Цитоплазматические мутации – изменения в ДНК митохондрий и пластид. Передаются только по женской линии, т.к. митохондрии и пластиды из сперматозоидов в зиготу не попадают. Пример у растений – пестролистность. Соматические – мутации в соматических клетках (клетках тела; могут быть четырех вышеназванных видов). При половом размножении по наследству не передаются. Передаются при вегетативном размножении у растений, при почковании и фрагментации у кишечнополостных (у гидры). Генеративные мутации – мутации в наследственном материале гамет, которые становится достоянием следующего поколения, если такие гаметы участвуют в оплодотворении. Например, синдром Дауна, обусловленный трисомией по 21-й хромосоме. Типы мутаций: - по изменению генотипа: а) генные, б) хромосомные, в) геномные - по изменению фенотипа: а) морфологические, б) биохимические, в) физиологические, г) летальные и т.д. - по отношению к генеративному пути: а) соматические, б) генеративные. - по поведению мутации в гетерозиготе: а) доминантные, б) рецессивные. - по локализации в клетке: а) ядерные, б) цитоплазматические. - по причинам возникновения: а) спонтанные, б) индуцированные. Генные болезни – это большая группа заболеваний, возникающих в результате повреждения ДНК на уровне гена.(синлром Морфана,болезнь Гоше,синдром Леша-Найхана) К хромосомным относятся болезни, обусловленные геномными мутациями или структурными изменениями отдельных хромосом. Хромосомные болезни возникают в результате мутаций в половых клетках одного из родителей. (Синдром Дауна, синдром Патау,Шерешевского-Тёрнера) Антимутационные механизмы: речь идет об особенностях функционирования ДНК – полимеразы, отбирающей требуемые нуклеотиды в процессе репликации ДНК, а также осуществляющей самокоррекцию при образовании новой цепи ДНК наряду с редактирующей экдонуклеазой. Фактором защиты против неблагоприятных последствий генных мутаций служит парность хромосом в диплоидном кариотипе соматических клеток эукариот. Парность аллейных генов препятствует фенотипическому проявлению мутаций, если они имеют рецессивный характер. В снижение вредных последствий генных мутаций вносит явление экстракопирование генов, кодирующих жизненно важные макромолекулы. Пример, гены рРНК, тРНК, гистоновых белков, без которых жизнедеятельность любой клетки невозможна. Перечисленные механизмы способствуют сохранению отобранных в ходе эволюции генов и одновременно накоплению в генофонде популяции различных ей аллелей, формируя резерв наследственной изменчивости.

34.Геномные мутации, причины и механизмы их возникновения. Классификация геномных мутаций. Значение геномных мутаций. Геномные мутации и хромосомные болезни связаны с изменением числа хромосом без изменения структуры. Виды: -полиплоидия -увеличение числа хромосом кратное гаплоидному kn, где k>2, не совместима с жизнью, однако в царстве ратений встречаются и при этом изменяются размеры, урожайность и т.д. -гаплоидия -уменьшение числа хромосом до гаплоидного (n) не совместима с жизнью. - анеуплоидия -некратное гаплоидному уменьшение или увеличение числа хромосом 2n±k, где k≠n: • Трисомия - наличие в кариотипе 3 гомологичных хромосомы (трисомия по 21 хромосоме-синдром дауна) • Моносомия- наличие в кариотипе только одной из двух гомологичных хромосом (45, ХО-синдром Шерешевского-Тернера)

Полисомия- наличие в кариотипе более двух гетеросом полисомия по Х хромосоме (47, ХХХ-синдром трисомииХ, полисомия гетеросом 47,ХХУ- синдром Клайенфельтера) • Нулисомия- отсутствие в кариотипе пары гомологичных хромосом.абсолютно летальные. Причины геномных мутации-нарушения нормального расхождения хромосом: - в мейозе (анафаза 1 или 2)àаномальные по количеству хромосом гаметыàвсе клетки ребенка имеют неправильный кариотип -в анафазу митоза на стадии дробления зиготыàмозаицизм. Нарушение расхождения хромосом связано с повреждением веретена деления под действием мутагенов

35.Хромосомные мутации, их классификация. Причины и механизмы возникновения хромосомных мутаций. Роль хромосомных мутаций в развитии патологических состояний человека и эволюционном процессе. Хромосомные мутации (аберрации) связаны с изменениями структуры хромосом. Виды хромосомных мутаций: 1) Внутрихромосомные связаны с перестройками внутри одной хромосомы: • Делеция (нехватка)-выпадение части хромосомы ü Концевая(«кошачий крик») ü интерстициальная АВCDEF: АBCD-концевая, ABEF-интерстициальная

• Дупликация -удвоение участка ABCDCDEF • Инверсия -отрыв и поворот участка хромосомы на 180 градусов и прикрепление к месту отрыва, в результате нарушается порядок расположения гена ü Парацентрическая -не затрагивает центромеру ü Перицентрическая -затрагивает центромеру

2)Межхромосомные -происходят между негомологичными хромосомами:негомологичные хромосомы обмениваются сегментами (транслокации) Виды транслокаций

• Реципрокные- когда негомологичные хромосомы взаимно обмениваются участками • Нереципрокные -сегмент одной хромосомы переносится на другую без взаимного обмена • Дицентрические -при слиянии фрагментов негомологичных хромосом несущих участки с центромерами. • Робертсоновская - 2 акроцентрические хромосомы теряют короткие плечи и сливаются своими центромерами

• Разновидностью реципрокной транслокации является филадельфийская хромосома, когда фрагменты 9 и 22 хромосомы объединяются.Такое наблюдается в клетках крови и приводит к лейкозу. Причины хромосомных мутаций:

Из-за неравноценного кросинговера в профазу I мейоза или воздействия мутагенов,способствующих разрыву хромосом.

Проявление хромосомных мутаций: ü Делеция и дупликация проявляются фенотипически всегда, т.к. изменяется доза генов. Наблюдаются частичные моносомии и трисомии(хромосомные болезни) 5р- -синдром кошачьего крика или дупликация короткого плеча 4 хромосомы (микроцефалия,выступающая переносица,широкораставленные глаза, колобома радужки овальная) ü Инверсии и транслокации фенотипически проявляются не всегда, но при этом затрудняется конъюгация гомологичных хромосомàнарушение распределения хромосом между дочерними клетками=>бесплодие или появление потомков с несбалансированным генотипом.Если кто-то из родителей является носителем транслокации 21 хромосомы на 15, то в их потомстве с вероятностью 33,3% может родиться ребенок с транслокационным вариантом синдрома Дауна.

36.Генные мутации и их классификация. Причины и механизмы возникновения, частота встречаемости, биологические последствия генных мутаций. Генные мутации и генные болезни. Генные(точковые) мутации связаны с изменением структуры гена, а именно с изменением последовательности нуклеотидов в молекуле ДНК. Виды генных мутаций:

1) «сдвиг рамки считывания»-инсерция(вставка), дупликация (удвоение) или делеция (выпадение) пары или нескольких пар нуклеотидов. В результате мутации изменяется вся последовательность триплетов а=> м последовательность аминокислот после точки мутации. 2) Транзиция-замена пуринового основания на пуриновое или пиримидинового на пиримидиновое (А<àГ, Цß>Т)=> изменяется триплет в котором произошла транзиция=> изменяется только одна аминокислота. 3) Трансверсия-замена пурина на пиримидин или наоборот (Аß>Ц и Гß>Т) изменяется только одна аминокислота в белке. 4) Образование пиримидиновых димеров. Под влиянием УФО изменяются хим. Свойства пиримидинов (Т,Ц) и возникают водородные связи между двумя соседними Т-Т или Ц-Ц, прекращение транскрипции. 5) Инверсия нуклеотидной последовательности внутри гена приводит к изменению смысла био инфо. Результаты мутции структурных генов:

А) сомиссенс-мутация-возникновение кодона-синонима Б)миссенс мутация-изменение кодонаàизменение аминокислоты

В)нонсенс мутация-возникновение стоп-кодона=>прекращение транскрипции гена.

Результаты мутаций функциональных генов(ген-регулятор):

А)белок репрессор не соответствует гену операторуàтранскрипция не прекращаетсяàферменты синтезирубтся постоянно

Б)белок-репрессор плотно присоединен к гену-оператору и не снимается индукторомàферменты не синтезируются вообще

В) нарушается чередование репрессии и индукции.

Причиной генных мутаций может быть воздействие мутагенов (радиация) либо мутагенное давление среды=>генное заболевание(чаще всего наследственные болезни обмена) Наследственные генные заболевания делят по типу наследования

-Аутосомно-доминантные (арахнодактилия, ахондроплазия,полидактилия)

-Аутосомно-рецессивные(ФКУ,альбинизм,идиотиЯ)

-Сцепленные с полом(гемофилия, дальтонизм, мышечная дистрофия)

37.Генетическая инженерия, ее задачи, возможности, методы, достижения, перспективы. ГЕННАЯ ИНЖЕНЕРИЯ, или технология рекомбинантных ДНК, изменение с помощью биохимических и генетических методик хромосомного материала – основного наследственного вещества клеток. Хромосомный материал состоит из дезоксирибонуклеиновой кислоты (ДНК). Биологи изолируют те или иные участки ДНК, соединяют их в новых комбинациях и переносят из одной клетки в другую. В результате удается осуществить такие изменения генома, которые естественным путем вряд ли могли бы возникнуть. Методом генной инженерии получен уже ряд препаратов, в том числе инсулин человека и противовирусный препарат интерферон. И хотя эта технология еще только разрабатывается, она сулит достижение огромных успехов и в медицине, и в сельском хозяйстве. В медицине, например, это весьма перспективный путь создания и производства вакцин. В сельском хозяйстве с помощью рекомбинантной ДНК могут быть получены сорта культурных растений, устойчивые к засухе, холоду, болезням, насекомым-вредителям и гербицидам. Методы генной инженерии: - метод секвенирования – определение нуклеотидной последовательности ДНК; - метод обратной транскрипции ДНК; - размножение отдельных фрагментов ДНК. Современная биотехнология — это новое научно-техническое направление, возникшее в 60—70-х годах нашего столетия. Особенно бурно она стала развиваться с середины 70-х годов после первых успехов генно-инженерных экспериментов. Биотехнология, в сущности, не что иное, как использование культур клеток бактерий, дрожжей, животных или растений, метаболизм и биосинтетические возможности которых обеспечивают выработку специфических веществ. Биотехнология на основе применения знаний и методов биохимии, генетики и химической техники дала возможность получения с помощью легко доступных, возобновляемых ресурсов тех веществ и которые важны для жизни и благосостояния.

38.Значение генетики для медицины. Методы изучения генетики человека: биохимический, близнецовый, популяционно-статистический. Знание основ медицинской генетики позволяет врачу понимать механизмы индивидуального течения болезни и выбирать соответствующие методы лечения. На основе медико-генетических знаний приобретаются навыки диагностики наследственных болезней, а также появляется умение направлять пациентов и членов их семей на медико-генетическое консультирование для первичной и вторичной профилактики наследственной патологии. Приобретение медико-генетических знаний способствует формированию чётких ориентиров в восприятии новых медико-биологических открытий, что для врачебной профессии необходимо в полной мере, поскольку прогресс науки быстро и глубоко изменяет клиническую практику. Понимание молекулярных механизмов патогенеза наследственных болезней и высокие медицинские технологии обеспечили успешное лечение многих форм патологии. Близнецовый метод – сравнение однояйцевых близнецов, позволяет изучать модификационную изменчивость (определять воздействие генотипа и среды на развитие ребенка). Однояйцевые близнецы получаются, когда один зародыш на стадии 30-60 клеток делится на 2 части, и каждая часть вырастает в ребенка. Такие близнецы всегда одного пола, похожи друг на друга очень сильно (потому что у них совершенно одинаковый генотип). Отличия, которые возникают у таких близнецов в течение жизни, связаны с воздействием условий окружающей среды. Р азнояйцевые близнецы (не изучаются в близнецовом методе) получаются, когда в половых путях матери одновременно оплодотворяются две яйцеклетки. Такие близнецы могут быть одного или разного пола, похожи друг на друга как обычные братья и сестры. Биохимический метод основан на изучении характера биохимических реакций в организме, обмена веществ для установления носительства аномального гена или уточнения диагноза. Заболевания, в основе которых лежит нарушение обмена веществ, составляют значительную часть генной наследственной патологии. К ним относятся сахарный диабет, фенилкетонурия (нарушение обмена фенилаланина), галактоземия (нарушение усвоения молочного сахара) и другие. Этот метод позволяет установить болезнь на ранней стадии и лечить ее. Популяционно-статистический метод дает возможность рассчитать в популяции частоту встречаемости нормальных и патологических генов, определить соотношение гетерозигот – носителей аномальных генов. С помощью данного метода определяется генетическая структура популяции (частоты генов и генотипов в популяциях человека); частоты фенотипов; исследуются факторы среды, изменяющие генетическую структуру популяции. В основе метода лежит закон Харди–Вайнберга, в соответствии с которым частоты генов и генотипов в многочисленных популяциях, обитающих в неизменных условиях, и при наличии панмиксии (свободных скрещиваний) на протяжении ряда поколений остаются постоянными. Вычисления производятся по формулам: р + q = 1, р2 + 2pq + q2 = 1. При этом р – частота доминантного гена (аллеля) в популяции, q – частота рецессивного гена (аллеля) в популяции, р2 – частота гомозигот доминантных, q2 – гомозигот рецессивных, 2pq – частота гетерозиготных организмов. Используя этот метод, можно также определять частоту носителей патологических генов.

39.Особенности человека как объекта для генетических исследований. Методы изучения генетики человека: генеалогический, цитогенетический. Основные закономерности наследственности и изменчивости живых организмов были открыты благодаря разработке и применению гибридологического метода генетического анализа, основоположником которого является Г. Мендель. Наиболее удобными объектами, широко используемыми генетиками для гибридизации и последующего анализа потомства, стали горох, дрозофила, дрожжи, некоторые бактерии и другие виды, легко скрещивающиеся в искусственных условиях. Отличительной особенностью этих видов является достаточно высокая плодовитость, позволяющая применять статистический подход при анализе потомства. Короткий жизненный цикл и быстрая смена поколений позволяют исследователям в относительно небольшие промежутки времени наблюдать передачу признаков в последовательном ряду многих поколений. Немаловажной характеристикой видов, используемых в генетических экспериментах, является также небольшое число групп сцепления в их геномах и умеренное модифицирование признаков под влиянием окружающей среды. С точки зрения приведенных выше характеристик видов, удобных для применения гибридологического метода генетического анализа, человек как вид обладает целым рядом особенностей, не позволяющих применять этот метод для изучения его наследственности и изменчивости. Во-первых, у человека не может быть произведено искусственного направленного скрещивания в интересах исследователя. Во-вторых, низкая плодовитость делает невозможным применение статистического подхода при оценке немногочисленного потомства одной пары родителей. В-третьих, редкая смена поколений, происходящая в среднем через 25 лет, при значительной продолжительности жизни дает возможность одному исследователю наблюдать не более 3—4 последовательных поколений. Наконец, изучение генетики человека затрудняется наличием в его геноме большого числа групп сцепления генов (23 у женщин и 24 у мужчин), а также высокой степенью фенотипического полиморфизма, связанного с влиянием среды. Все перечисленные особенности человека делают невозможным применение для изучения его наследственности и изменчивости классического гибридологического метода генетического анализа, с помощью которого были открыты все основные закономерности наследования признаков и установлены законы наследственности. Однако генетиками разработаны приемы, позволяющие изучать наследование и изменчивость признаков у человека, несмотря на перечисленные выше ограничения. Невозможность направленного скрещивания, проводимого в интересах исследования, и малочисленность потомства, получаемого от каждой родительской пары, компенсируются подбором в популяции семей с интересующим генетика признаком в количестве, достаточном для проведения статистического анализа потомства. Ограниченность числа поколений, которые может наблюдать один генетик, компенсируется возможностью подбора и регистрации последовательных поколений семей с интересующим признаком многими поколениями исследователей. Существенно облегчается генетический анализ у человека благодаря высокой степени изученности его фенотипа методами морфологии, физиологии, биохимии, иммунологии, клиники. Большие перспективы в изучении наследственности и изменчивости у человека открываются в связи с применением ранее используемых и новых методов генетических исследований. Генеалогический м етод – изучение родословных. Позволяет определить закономерности наследования признаков, например: если признак проявляется в каждом поколении, то он доминантный (праворукость) если через поколение – рецессивный (голубой цвет глаз) если чаще проявляется у одного пола – это признак, сцепленный с полом (гемофилия, дальтонизм)

Цитогенетический метод – изучение под микроскопом хромосомного набора – числа хромосом, особенностей их строения. Позволяет выявлять хромосомные болезни. Например, при синдроме Дауна имеется одна лишняя 21-ая хромосома.

40.Методы изучения генетики человека: гибридизация соматических клеток, методы изучения ДНК (рестрикционный анализ, полимеразная цепная реакция, электрофорез, ДНК-зонды). Гибридизация соматических клеток -является одним из наиболее популярных методов отнесения генетического маркера (функционально активного гена) к конкретной группе сцепления является гибридизация (слияние друг с другом) соматических клеток разных биологических видов организмов, один из которых - исследуемый. У межвидовых гибридов соматических клеток в процессе культивирования происходит утрата хромосом преимущественно одного из биологических видов. Потеря хромосом носит, как правило, случайный характер, и образующиеся клоны клеток содержат оставшиеся хромосомы в разных сочетаниях. Анализ клонов, содержащих разные наборы хромосом исследуемого вида, позволяет определить, с какой из этих оставшихся хромосом ассоциирована экспрессия исследуемого маркера, и, следовательно, локализовать ген на конкретной хромосоме. Рестрикционный анализ — установление мест расщепления одной или несколькими рестриктазами конкретной нуклеотидной последовательности ДНК. Полимеразная цепная реакция (ПЦР) — экспериментальный метод молекулярной биологии, позволяющий добиться значительного увеличения малых концентраций определённых фрагментов нуклеиновой кислоты (ДНК) в биологическом материале (пробе). Помимо амплификации ДНК, ПЦР позволяет производить множество других манипуляций с нуклеиновыми кислотами (введение мутаций, сращивание фрагментов ДНК) и широко используется в биологической и медицинской практике, например, для диагностики заболеваний (наследственных, инфекционных), для установления отцовства, для клонирования генов, выделения новых генов. Электрофорез ДНК — это аналитический метод, применяемый для разделения фрагментов ДНК по размеру (длине).После разделения (иногда краситель вносят в расплавленную агарозу) фрагменты ДНК разной длины визуализируют при помощи флюоресцентных красителей, специфично взаимодействующих с ДНК, например, агарозные гели обычно красят бромистым этидием, который интеркалирует между азотистыми основаниями дуплекса и флюоресцирует в УФ-лучах. ДНК-зонд — фрагмент ДНК, меченный тем или иным образом и использующийся для гибридизации со специфическим участком молекулы ДНК. Позволяет идентифицировать комплементарные ему нуклеотидные последовательности.

41.Нетрадиционное наследование признаков (цитоплазматическое наследование, геномный импринтинг). Примеры заболеваний человека с нетрадиционным наследованием. Наличие некоторого количества наследственного материала в цитоплазме в виде кольцевых молекул ДНК митохондрий и пластид, а также других внеядерных генетических элементов дает основание специально остановиться на их участии в формировании фенотипа в процессе индивидуального развития. Цитоплазматические гены не подчиняются менделевским закономерностям наследования, которые определяются поведением хромосом при митозе, мейозе и оплодотворении. В связи с тем что организм, образуемый вследствие оплодотворения, получает цитоплазматические структуры главным образом с яйцеклеткой, цитоплазматическое наследование признаков осуществляется по материнской линии. Как было установлено позднее, развитие этого признака обусловлено мутацией, возникающей в ДНК хлоропластов и нарушающей синтез хлорофилла в них. Размножение в клетках нормальных (зеленых) и мутантных (бесцветных) пластид и последующее случайное распределение их между дочерними клетками приводят к появлению отдельных клеток, совершенно лишенных нормальных пластид. Потомство этих клеток образует обесцвеченные участки на листьях. Фенотип потомства, таким образом, зависит от фенотипа материнского растения. У растения с зелеными листьями потомство абсолютно нормально. У растения с бесцветными листьями потомство имеет такой же фенотип. У материнского растения с пестрыми листьями потомки могут иметь все описанные фенотипы по данному признаку. При этом внешний вид потомства не зависит от признака отцовского растения. Геномный импринтинг рассматривается как эпигенетическое явление, подчеркивая тем самым тот факт, что наследуются изменения генной активности, обусловленные различным происхождением хромосом (от отца или матери), а не структурными перестройками генетического материала. Было установлено, что в отдельных участках хромосом, которые подвержены геномному импринтингу, экспрессируется только один отцовский или один материнский аллель в отличие от обычной диаллельной экспрессии генов. Если геномному импринтингу подвержен материнский ген, то экспрессируется только отцовский аллель и наоборот. Геномный импринтинг проявляется на ранних этапах эмбрионального развития и приводит к различиям в экспрессии материнских или отцовских аллелей.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: