Для установления связи между ними продифференцируем выражение (1) по времени

т.к. и

то (2)

Взяв производную по времени от полученного выражения (2) получим,

где, а.

Тогда (3)

Зная, что нормальное ускорение, после подстановки значения скорости (2) получим

(3)

Все величины, стоящие в формулах (1-4)

являются векторными. При этом линейные векторные величины лежат в плоскости

окружности по которой движется точка, а все

угловые – вдоль оси вращения, перпендику-

лярной плоскости. Если положение рассма-

триваемой точки определить радиусом

вектором, проведённым из лежащего на оси вращения начала координат О (Рис.6),

то вектор скорости,а её модуль

,где. Аналогично можно

записать в векторной форме:

10. Зако́ны Ньюто́на — три закона, лежащие в основе классической механики и позволяющие записать уравнения движения для любой механической системы, если известны силовые взаимодействия для составляющих её тел.

 

· Первый закон Ньютона - всякая мат. точка (тело) сохраняет состояние покоя или равномерного движения до тех пор, пока взаимодействие со стороны других тел не заставит её изменить это состояние.

Стремление тела сохранять состояние покоя или равномерного прямолинейного движения наз. инертностью.

· Второй закон Ньютона - ускорение приобретаемое телом пропорционально вызывающей его силе, совпадает с ней по направлению и обратно пропорционально массе тела

· Третий закон Ньютона: всякое действие мат. точек друг на друга носит характер взаимодействия; силы, с которыми действуют друг на друга мат. точки, всегда равны по модулю, противоположно направлены и действуют вдоль прямой соединяющей эти точки.

Закон сохранения импульса: импульс замкнутой системы сохраняется.

Инерциальной системой отсчёта является такая система, которая либо покоится, либо движется равномерно и прямолинейно относительно какой-то другой инерциальной системы.

11.

 

Основное уравнение динамики поступательного движения произвольной системы тел  
 

 

Тела, не входящие в состав рассматриваемой системы, называют внешними телами, а силы, действующие на систему со стороны этих тел, – внешними силами. Силы взаимодействия между телами внутри системы называют внутренними силами. Результирующая всех внутренних сил, действующих на i -е тело: где ki – т.к. i -я точка не может действовать сама на себя. Скорость изменения импульса системы равна главному вектору всех внешних сил, действующих на эту систему. Центр механической системы движется как материальная точка, масса которой равна массе всей системы и на которую действует сила, равная главному вектору внешних сил, приложенных к системе. На основании третьего закона Ньютона силы, действующие на тела системы со стороны других тел системы (внутренние силы), взаимно компенсируют друг друга. Остаются только внешние силы. В общем случае движение тела можно рассматривать как сумму двух движений: поступательного со скоростью и вращательного вокруг центра инерции.

 

12. Масса системы равняется алгебраической сумме масс всех точек или тел системыВ однородном поле тяжести, для которого, вес любой частицы тела пропорционален ее массе. Поэтому распределение масс в теле можно определить по положению его центра тяжести – геометрической точки С, координаты которой называют центром масс или центром инерции механической системы
Сила - это векторная величина, являющаяся мерой механического воздействия на тело со стороны других тел иди полей, в результате которого тело приобретает ускорение или изменяет свою форму и размеры.

И́мпульс (Количество движения) — векторная физическая величина, характеризующая меру механического движения тела. В классической механике импульс тела равен произведению массы m этого тела на его скорость v, направление импульса совпадает с направлением вектора скорости: .

 

 

Преобразова́ния Галиле́я — в классической механике (механике Ньютона) преобразования координат и времени при переходе от одной инерциальной системы отсчета (ИСО) к другойПреобразования Галилея являются предельным (частным) случаем преобразований Лоренца для скоростей, малых по сравнению со скоростью света в пустоте и в ограниченном объёме пространства. Для скоростей вплоть до порядка скоростей движения планет в Солнечной системе (и даже бо́льших), преобразования Галилея приближенно верны с очень большой точностью.

 

скорость тела относительно неподвижной системы координат равна векторной сумме скорости тела относительно движущейся системы координат и скорости системы отсчета относительно неподвижной системы отсчета. Аналогично можно получить формулу преобразования ускорений при переходе из одной системы координат в другую, верную при условии, что эти системы движутся поступательно друг относительно друга:

14.

Поскольку в Ньютоновской динамике из кинематических величин именно ускорение играет роль), то, если предположить, что силы зависят лишь от относительного положения и скоростей физических тел (а не их положения относительно абстрактного начала отсчета), окажется, что все уравнения механики запишутся одинаково в любой инерциальной системе отсчета - иначе говоря, законы механики не зависят от того, в какой из инерциальных систем отсчета мы их исследуем, не зависят от выбора в качестве рабочей какой-то конкретной из инерциальных систем отсчета. Также - поэтому - не зависит от такого выбора системы отсчета наблюдаемое движение тел (учитывая, конечно, начальные скорости). Это утверждение известно как принцип относительности Галилея.

Иным образом этот принцип формулируется (следуя Галилею) так: если в двух замкнутых лабораториях, одна из которых равномерно прямолинейно (и поступательно) движется относительно другой, провести одинаковый механический эксперимент, результат будет одинаковым.

 

15. При рассмотрении сложного движения (то есть когда точка или тело движется в одной системе отсчёта, а она движется относительно другой) возникает вопрос о связи скоростей в 2 системах отсчёта.

 

Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: