Загальні властивості атомного ядра. Енергія зв’язку атомних ядер

Основна маса атома зосереджена у ядрі, яке складається з нуклонів: протонів і нейтронів, зв'язаних між собою силами ядерної взаємодії.

Кількість протонів у ядрі атома визначає його атомним номером і те, якому елементові належить атом. Всі атоми із певним атомним номером мають однакові фізичні характеристики й проявляють однакові хімічні властивості. В періодичній таблиці елементи перелічені в порядку зростання атомного номеру.

Загальна кількість протонів та нейтронів в атомі елементу визначає його атомну масу, оскільки протон та нейтрон мають масу приблизно рівну 1 а.о.м. Нейтрони в ядрі не впливають на те, якому елементові належить атом, але хімічний елемент може мати атоми із однаковою кількістю протонів і різною кількістю нейтронів. Такі атоми мають однаковий атомний номер, але різну атомну масу, й називаються ізотопами елементу. Коли пишуть назву ізотопу, після неї пишуть атомну масу. Наприклад, ізотоп вуглець-14 містить 6 протонів та 8 нейтронів, що в сумі складає атомну масу 14. Інший популярний метод нотації полягає в тому, що атомна маса позначається верхнім індексом перед символом елементу. Наприклад, вуглець-14 позначається, як 14C.

Атомна маса елементу наведена в періодичній таблиці є усередненим значенням маси ізотопів що зустрічаються в природі. Усереднення проводиться відповідно до поширеності ізотопу в природі.

Із збільшенням атомного номера зростає додатній заряд ядра, а, отже, кулонівське відштовхування між протонами. Щоб втримати протони вкупі необхідно дедалі більше нейтронів. Проте велика кількість нейтронів нестабільна, і ця обставина накладає обмеження на можливий заряд ядра і кількість хімічних елементів, що існують в природі. Хімічні елементи з великими атомними номерами мають дуже малий час життя, можуть спостерігатися лише під час експериментів з використанням прискорювачів.

Чимало ізотопів хімічних елементів нестабільні й розпадаються з часом.

 

Між протонами і нейтронами в ядрі діють значні сили кулонівського відштовхування, але ядро не розлітається, оскільки протони і нейтрони в ядрі утримують могутні ядерні сили. Це най потужніші сили в природі, що є мірою сильної взаємодії. Їх характерна особливість - вони діють на дуже малих відстанях, що приблизно дорівнюють розміру ядра (10-12 – 10-13 см).

Щоб вибити нуклон із ядра, потрібно виконати величезну роботу, тобто передати ядру енергію зв'язку. Це - енергія, яка потрібна для повного розщеплення ядра на нуклони, або енергія, яка виділяється під час утворення ядра із окремих частинок.

Оскільки остаточну теорію ядерних сил поки що не створено, то енергію зв'язку розраховують за формулою Ейнштейна:

E = mc 2.

Точні вимірювання мас ядер показують, що маса ядра менша за суму мас протонів та нейтронів:

M я < Zmp + Nmn,

Існує так званий дефект мас:

M = Zmp + NmnM я.

Підставивши значення дефекту мас в рівняння для енергії, отримаємо формулу для визначення енергії зв'язку:

E зв =  2 = (Zmp + NmnM яс 2.

Ядра, з частинок, під дією ядерних сил на малих відстанях прямують одна до одної з величезним прискоренням. Випромінювані при цьому  - кванти мають енергію E зв і масу

Важливу інформацію про властивості ядер містить залежність енергії зв'язку від масового числа А.

Питомою енергією зв'язку називають енергію зв'язку, яка припадає на один нуклон.

Питома енергія зв'язку елементів масові частки яких 50-60 найбільшоа, тому ядра цих елементів найбільш стійкі.

Питома енергія зв'язку тяжких ядер зменшується за рахунок зростаючої із збільшенням Z кулонівської енергії відштовхування, оскільки сила Кулона Fk намагається розірвати ядро.



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: