Методы защиты металлов от коррозии

Применение различных методов защиты металлов от коррозии позволяет в какой-то степени свести к минимуму потери металла. В зависимости от причин, вызывающих коррозию, различают следующие методы защиты.

1) Обработка среды, в которой протекает коррозия металла. К подобным методам относят процессы нейтрализации среды, обескислороживание, введение ингибиторов (замедлителей) коррозии.

Эти методы используются в случаях, когда объем коррозионной среды достаточно ограничен. Широкое распространение получили ингибиторы, которые защищают от атмосферной коррозии изделия из черных и цветных металлов при хранении, транспортировке и т.д. В качестве ингибиторов используют как неорганические, так и органические вещества: хроматы, полифосфаты, формальдегид, различные амины, уротропин и др.

Введение в раствор таких окислителей как K2Cr2O7 и K2CrO4 способствуют образованию на железе оксидных пассивирующих

пленок. Полифосфаты, к которым относится и «Калгон»(гексаметафосфат натрия (NaPO3)n, где n = 6 - 20), образуют с ионами Са2+ и Mg2+ водорастворимые соли, т.е. одновременно умягчают воду и ингибирует процесс коррозии за счет образования на поверхности плотной пленки фосфата железа.

Действие ингибиторов заключается в следующем. При малых концентрациях, ингибитор адсорбируется на активных участках поверхности металла и блокирует их, снижая скорость коррозии в разы. При больших концентрациях ингибитор создает на поверхности плотно закрывающие защитные пленки, наподобие масляных, которые препятствуют доступу деполяризатора к поверхности металла и замедляют скорость его растворения. Ингибиторы могут замедлять как анодную реакцию окисления металла, так и катодную стадию восстановления окислителя - деполяризатора.

 

2) Метод деаэрации (обескислороживания) заключается в удалении из воды кислорода. Для этого используют специальные вещества: сульфит натрия (Na2SO3 + 1/2O2 = Na2SO4), пирогаллол и другие, а также пропускают воду через слои металлической стружки, которая корродирует по механизму кислородной деполяризации и при этом поглощает кислород из воды.

3) Легирование металла. Для сталей, работающих в агрессивных газовых и жидких средах, широко используют легирование металла. В металлы вводятся такие легирующие компоненты, которые увеличивают химическую стойкость и жаропрочность (сопротивление образованию окалины), которые обладают высокой диффузионной способностью в данном металле или сплаве и, выходя на поверхность, образуют устойчивые оксидные слои, а в растворах сдвигают потенциал легированного металла в положительную сторону.

Важнейшими коррозионностойкими сплавами являются нержавеющие стали с повышенным содержанием хрома: хромистые и хромоникелевые. На рис. 8 показано влияние количества хрома в железохромистых сплавах на электрохимический потенциал сплава.

 

Рис. 8. Влияние хрома на потенциал сплавов Fe - Cr

 

Из рис.8 видно, что содержание хрома в нержавеющей стали должно быть не менее 15 % и при этом потенциал стали сдвигается в положительную сторону почти на 1,0 В, снижая возможность ее окисления. Наиболее распространенная нержавеющая сталь Х18Н10Т, содержит 18 % хрома и 10 % никеля. Кроме сдвига потенциала, хром и никель на поверхности нержавеющих сталей

этого класса, образуют оксидный слой, содержащий NiCr2O4 и FeCr2O4, который более устойчив, чем просто оксид Cr2O3. Аналогичным действием обладают Аl (аллитирование), Si (силицирование) и другие.

Во многих случаях на поверхности металлов (Ti, Nb, Zr, Cr, А1) специально формируют стойкие оксидные пленки, которые предохраняют металлы от коррозии (так, на поверхности алюминия методом анодирования создают слои Al2O3, препятствующие дальнейшему окислению металла). Высокая химическая стойкость большинства оксидов этих металлов связана с тем, что по своей природе они являются либо диэлектриками, либо полупроводниками и плохо проводят электрический ток. По этой причине катодная и анодная реакции, связанные с переносом заряда (электрона) через закрывающий металл оксид, из-за большого электрического сопротивления становятся невозможными.

 

Защитные покрытия

 

Неметаллические покрытия. Представляют собой изолирующие слои красок, лаков, резины, эмалей, пластмасс и другие.

Наиболее распространенными являются лакокрасочные покрытия, однако их механические свойства значительно ниже, чем у металлических.

Химические покрытия. Это специально создаваемые на поверхности металла химически стойкие соединения, способные изолировать его от окружающей среды: оксиды, фосфаты, сульфаты и другие.

Фосфатирование металлической поверхности представляет собой процесс осаждения нерастворимых фосфатов этого металла. Сущность процесса фосфатирования: 2Fe2+ + Fe(H2PO4)2 = Fe3(PO4)2 ↓+ 4H+ Нерастворимые фосфаты прочно связаны с поверхностью металла и тормозят отвод продуктов коррозии и доставку деполяризатора к ней.

Металлические защитные покрытия подразделяют на четыре типа:

1) металлические покрытия, оксидный слой которых делает металлы пассивными (А1, Zn, Sn, Cr, Pb, Ni);

2) металлические покрытия, которые сами по себе являются химически стойкими (Au, Ag, Сu) из-за высоких положительных Е о.

3) Анодные покрытия. Если на металл нанести покрытие из другого, более электроотрицательного металла, то в случае возникновения условий для электрохимической коррозии разрушаться будет покрытие, а не защищаемый металл. Такое покрытие называется анодным и примером анодных покрытий могут служить хром или цинк, термическим или гальваническим путем, нанесенные на железо. В случае нарушения целостности покрытия при контакте с влажным воздухом будет работать гальванический элемент:

А (–) Cr | H2O, O2 | Fe (+) К

на аноде: Cr – 2e = Cr2+

на катоде (Fe): 2 H2O + O2 + 4e = 4 OH

2Cr + 2H2O + O2 = 2 Cr(OH)2

Далее, протекает реакция 4 Cr(OH)2 + 2H2O + O2 = 4 Cr(OH)3

Таким образом, в результате электрохимической коррозии разрушается анодное покрытие, а конструкция остается целой.

4) Катодные покрытия. У катодного покрытия стандартный электродный потенциал более положителен, чем у защищаемого металла. Пока слой покрытия изолирует металл от окружающей среды, электрохимическая коррозия не протекает. При нарушении сплошности покрытия оно перестает защищать металл от коррозии.

Более того, нарушенное катодное покрытие интенсифицирует коррозию основного металла, так как в возникающей при этом гальванопаре, анодом будет служить основной металл, который и будет разрушаться.

В качестве примера можно привести оловянное покрытие на железе (луженое железо).

Рассмотрим работу гальванического элемента, возникающего в этом случае.

А (–) Fe / H2O, O2 / Sn (+) К

 

на аноде: Fe – 2e = Fe2+

на катоде (Sn): 2 H2O + O2 + 4e = 4 OH

2Fe + 2H2O + O2 = 2Fe(OH)2

Таким образом, при сравнении свойств анодных и катодных покрытий можно сделать вывод, что наиболее эффективными являются анодные покрытия. Они защищают основной металл даже в случае нарушения целостности покрытия, тогда как катодные покрытия защищают металл лишь механически.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: