double arrow

Перевод целых чисел


Шестнадцатеричная система счисления.

Восьмеричная система счисления.

Двоичная система счисления.

Системы счисления

Прагматическая мера информации

Эта мера определяет полезность информации (ценность) для достижения пользователем поставленной цели. Эта мера также величина относительная, обусловленная особенностями использования этой информации в той или иной системе. Ценность информации целесообразно измерять в тех же самых единицах, в которых измеряется целевая функция.

В вычислительной технике используется двоичная система кодирования данных основанная на двоичной системе счисления.

Система счисления – это способ наименования и изображения чисел с помощью символов, имеющих определенное количественное значение.

Различают позиционные и непозиционные системы счисления. В непозиционной системе счисления цифры не меняют своего значения при изменении их расположения в числе, например, римская система счисления. В позиционной системе счисления значение каждой цифры зависит от ее расположения в числе. Количество различных цифр, используемых для изображения числа в позиционной системе счисления, называется ее основанием и обозначается – P. Запись любого числа в системе счисления с основанием P будет представлять собой ряд:

аm-1Pm-1 + am-2Pm-2 +…+ a2P2 + a1P1 + a0P0 + a-1P-1 a-2P-2 +…+ a-sP-s

где Р – основание системы счисления;

m, s – разряд числа, причем m – для целой части, s – для дробной;

а – число.

Например 1743 = 1*103 + 7*102 + 4*101 + 3*100

0.25 = 2*10-1 + 5*10-2

Основанием двоичной системы счисления является число 2. Любое число в этой системе счисления изображается с помощью цифр 0 и 1. В таком контексте эти знаки называются двоичными цифрами (binary digit – bit (бит)). Каждый старший разряд больше соседнего младшего в два раза.

Например.

11010(2) ® 1*24 + 1*23 + 0*22 + 1*21 + 0*20 = 16 + 8 + 0 + 2 + 0= 26(10)

Основанием восьмеричной системы счисления является число 8. Для представления чисел используется восемь различных цифр 0, 1, 2, …, 7.

Например.

17(8) ® 1*81 + 7*80 = 15(10)

Основанием шестнадцатеричной системы счисления является число 16. Для представления чисел используется десять цифр 0, 1, 2, …, 9 и буквы A, B, C, D, E, F соответственно равные 10, 11, 12, 13, 14, 15.

Например.

СF(16) ® С*161 + F*160 = 12*16 + 15*1 = 207(10)

Для того чтобы перевести число из десятичной системы счисления в двоичную, восьмеричную, шестнадцатеричную, необходимо выполнить последовательное деление этого десятичного числа на основание (P) той системы счисления, в которую это десятичное число переводится. Деление нужно выполнять до тех пор, пока не получится частное, меньшее этого основания. Число в новой системе счисления записывается в виде остатков деления, начиная с последнего. Последнее частное считается как остаток.

Заказать ✍️ написание учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Сейчас читают про: