Студопедия
МОТОСАФАРИ и МОТОТУРЫ АФРИКА !!!


Авиадвигателестроения Административное право Административное право Беларусии Алгебра Архитектура Безопасность жизнедеятельности Введение в профессию «психолог» Введение в экономику культуры Высшая математика Геология Геоморфология Гидрология и гидрометрии Гидросистемы и гидромашины История Украины Культурология Культурология Логика Маркетинг Машиностроение Медицинская психология Менеджмент Металлы и сварка Методы и средства измерений электрических величин Мировая экономика Начертательная геометрия Основы экономической теории Охрана труда Пожарная тактика Процессы и структуры мышления Профессиональная психология Психология Психология менеджмента Современные фундаментальные и прикладные исследования в приборостроении Социальная психология Социально-философская проблематика Социология Статистика Теоретические основы информатики Теория автоматического регулирования Теория вероятности Транспортное право Туроператор Уголовное право Уголовный процесс Управление современным производством Физика Физические явления Философия Холодильные установки Экология Экономика История экономики Основы экономики Экономика предприятия Экономическая история Экономическая теория Экономический анализ Развитие экономики ЕС Чрезвычайные ситуации ВКонтакте Одноклассники Мой Мир Фейсбук LiveJournal Instagram

Расчет коэффициентов Спирмена




Пример 11.

По группе предприятий, выставивших акции на чековые аукционы в 1996 г., определить с помощью коэффициентов Спирмена зависимость между величиной уставного капитала и количеством выставленных акций.

Таблица 15

№ пред- приятия Уставной капитал, млн. руб. (X) Число выставленных акций, (Y) Ранги Разность рангов di = Rx - Ry di2
Rx Ry
-8
-5
Итого          

связь слабая.

Ранговый коэффициент корреляции Кендалла также может использоваться для измерения взаимосвязи между качественными и количественными признаками, характеризующими однородные объекты и ранжированные по одному принципу. Расчет рангового коэффициента Кендалла осуществляется по формуле:

где - число наблюдений;

- сумма разностей между числом последовательностей и числом инверсий по второму признаку.

Расчет данного коэффициента выполняется в следующей последовательности:

1. Значения Х ранжируются в порядке возрастания или убывания;

2. Значения У располагаются в порядке, соответствующем значениям X.

3. Для каждого ранга У определяется число следующих за ним значений рангов, превышающих его величину. Суммируя таким образом числа = определяется величина P, как мера соответствия последовательностей рангов по Х и У и учитывается со знаком (+);

4. Для каждого ранга У определяется число следующих за ним значений рангов, меньших его величины. Суммарная величина обозначается через Q и фиксируется со знаком (-);

5. Определяется сумма баллов по всем членам ряда. В приведенном dsit примере

Р= 1 + 8 + 1 + 6 + 4 + 3 + 3 + 2 +1 = 29

Q = (-8) + 0 + (-6) + 0 + (-1) + (-1) + 0 + 0 + 0 = -16

Таким образом:

что свидетельствует о практическом отсутствии связи между рассматриваемыми признаками.

Как правило, коэффициент Кендалла меньше коэффициента Спирмена. При достаточно большом объеме совокупности значения данных коэффициентов имеют следующую зависимость:

Связь между признаками признается статистически значимой, если значения коэффициентов ранговой корреляции Спирмена и Кендалла больше 0,5.

Для определения тесноты связи между произвольным числом ранжированных признаков применяется множественный коэффициент ранговой корреляции (коэффициент конкордации) W , который вычисляется по формуле:




,

где т - количество факторов, n - число наблюдений, S - отклонение суммы квадратов рангов от средней квадратов рангов.

Ранговые коэффициенты Спирмена, Кендалла и конкордации имеют то преимущество, что с помощью их можно измерять и оценивать связи как между количественными, так и между атрибутивными признаками, которые поддаются ранжированию.





Дата добавления: 2014-01-25; просмотров: 475; Опубликованный материал нарушает авторские права? | Защита персональных данных | ЗАКАЗАТЬ РАБОТУ


Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Как то на паре, один преподаватель сказал, когда лекция заканчивалась - это был конец пары: "Что-то тут концом пахнет". 8474 - | 8067 - или читать все...

Читайте также:

 

18.207.255.49 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.


Генерация страницы за: 0.002 сек.