Кибернетические методы DataMining

Второе направление DataMining - это множество подходов, объединенных идеей компьютерной математики и использования теории искусственного интеллекта.

К этой группе относятся такие методы:

· искусственные нейронные сети (распознавание, кластеризация, прогноз);

· эволюционное программирование;

· генетические алгоритмы (оптимизация);

· ассоциативная память (поиск аналогов, прототипов);

· нечеткая логика;

· деревья решений;

· системы обработки экспертных знаний.

Методы DataMining также можно классифицировать по задачам DataMining.

В соответствии с такой классификацией выделяем две группы. Первая из них - это подразделение методов DataMining на решающие задачи сегментации (т.е. задачи классификации и кластеризации) и задачи прогнозирования.

В соответствии со второй классификацией по задачам методы DataMining могут быть направлены на получение описательных и прогнозирующих результатов.

Описательные методы служат для нахождения шаблонов или образцов, описывающих данные, которые поддаются интерпретации с точки зрения аналитика.

К методам, направленным на получение описательных результатов, относятся итеративные методы кластерного анализа, в том числе: алгоритм k-средних, k-медианы, иерархические методы кластерного анализа, самоорганизующиеся карты Кохонена, методы кросс-табличной визуализации, различные методы визуализации и другие.

Прогнозирующие методы используют значения одних переменных для предсказания/прогнозирования неизвестных (пропущенных) или будущих значений других (целевых) переменных.

К методам, направленным на получение прогнозирующих результатов, относятся такие методы: нейронные сети, деревья решений, линейная регрессия, метод ближайшего соседа, метод опорных векторов и др.

Искусственная нейронная сеть (ИНС) — математическая модель, а также её программное или аппаратное воплощение, построенная по принципу организации и функционирования биологических нейронных сетей — сетей нервных клеток живого организма. Это понятие возникло при изучении процессов, протекающих в мозге, и при попытке смоделировать эти процессы. После разработки алгоритмов обучения получаемые модели стали использовать в практических целях: в задачах прогнозирования, для распознавания образов, в задачах управления и др.

ИНС представляет собой систему соединённых и взаимодействующих между собой простых процессоров. Такие процессоры обычно довольно просты. Каждый процессор подобной сети имеет дело только с сигналами, которые он периодически получает, и сигналами, которые он периодически посылает другим процессорам. И, тем не менее, будучи соединёнными в достаточно большую сеть с управляемым взаимодействием, такие по отдельности простые процессоры вместе способны выполнять довольно сложные задачи.

  • С точки зрения машинного обучения, нейронная сеть представляет собой частный случай методов распознавания образов, дискриминантного анализа, методов кластеризации и т. п.
  • С математической точки зрения, обучение нейронных сетей — это многопараметрическая задача нелинейной оптимизации.
  • С точки зрения кибернетики, нейронная сеть используется в задачах адаптивного управления и как алгоритмы для робототехники.
  • С точки зрения развития вычислительной техники и программирования, нейронная сеть — способ решения проблемы эффективного параллелизма.
  • А с точки зрения искусственного интеллекта, ИНС является основой философского течения коннективизма и основным направлением в структурном подходе по изучению возможности построения (моделирования) естественного интеллекта с помощью компьютерных алгоритмов.

Нейронные сети не программируются в привычном смысле этого слова, они обучаются. Возможность обучения — одно из главных преимуществ нейронных сетей перед традиционными алгоритмами. Технически обучение заключается в нахождении коэффициентов связей между нейронами. В процессе обучения нейронная сеть способна выявлять сложные зависимости между входными данными и выходными, а также выполнять обобщение. Это значит, что в случае успешного обучения сеть сможет вернуть верный результат на основании данных, которые отсутствовали в обучающей выборке, а также неполных и/или «зашумленных», частично искажённых данных.

Нейронечеткие или гибридные системы, включающие в себя нечеткую логику, нейронные сети, генетические алгоритмы и экспертные системы, являются эффективным средством при решении большого круга задач реального, мира.

Каждый интеллектуальный метод обладает своими индивидуальными особенностями, которые делают его пригодным только для решения конкретных специфических задач.

Например, нейронные сети успешно применяются в распознавании моделей, они неэффективны в объяснении способов достижения своих решений.

Системы нечеткой логики, которые связаны с неточной информацией, ус­тно применяются при объяснении своих решений, но не могут автоматически пополнять систему правил, которые необходимы для принятия этих решений.

Эти ограничения послужили толчком для создания интеллектуальных гибридных систем, где два или более методов объединяются для того, чтобы преодолеть ограничения каждого метода в отдельности.

Гибридные системы играют важную роль при решении задач в различных прикладных областях. Во многих сложных областях существуют проблемы, связанные с отдельными компонентами, каждый из которых может требовать своих методов обработки.

Интеллектуальные гибридные системы успешно применяются во многих областях, таких как управление, техническое проектирование, торговля, медицинская диагностика и когнитивное моделирование. Кроме того, диапазон приложения данных систем непрерывно растет.

В то время, как нечеткая логика обеспечивает механизм логического вывода из когнитивной неопределенности, вычислительные нейронные сети обладают такими заметными преимуществами, как обучение, адаптация, отказоустойчивость, параллелизм и обобщение.

Для того чтобы система могла обрабатывать когнитивные неопределенности так, как это делают люди, нужно применить концепцию нечеткой логики в нейронных сетях. Такие гибридные системы называются нечеткими нейронными или нечетко-нейронными сетями.

Нейронные сети используются для настройки функций принадлежи нечетких системах, которые применяются в качестве систем принятия решений.

Нечеткая логика может описывать научные знания напрямую, используя правила лингвистических меток, однако много времени обычно занимает процесс проектирования и настройки функций принадлежности, которые определяют эти метки.

Обучающие методы нейронных сетей автоматизируют этот процесс, существенно сокращая время разработки и затраты на получение данных функций.

Теоретически нейронные сети и системы нечеткой логики равноценны, поскольку они взаимно трансформируемы, тем не менее на практике каждая из них имеет свои преимущества и недостатки.

В нейронных сетях знания автоматически приобретаются за счет применения алгоритма вывода с обратным ходом, но процесс обучения выполняется относительно медленно, а анализ обученной сети сложен ("черный ящик").

Невозможно извлечь структурированные знания (правила) из обученной нейронной сети, а также собрать особую информацию о проблеме для того, чтобы упростить процедуру обучения.

Нечеткие системы находят большое применение, поскольку их поведение может быть описано с помощью правил нечеткой логики, таким образом, можно управлять, регулируя эти правила. Следует отметить, что приобретение знаний — процесс достаточно сложный, при этом область изменения каждого входного параметра необходимо разбивать на несколько интервалов; применение систем нечеткой логики ограничено областями, в которых допустимы знания эксперта и набор входных параметров достаточно мал.

Для решения проблемы приобретения знаний нейронные сети дополняются свойством автоматического получения правил нечеткой логики из числовых данных.

Вычислительный процесс представляет собой использование следующих нечетких нейронных сетей. Процесс начинается с разработки "нечеткого нейро­на", который основан на распознавании биологических нейронных морфоло­гии согласно механизму обучения. При этом можно выделить следующие три этапа вычислительного процесса нечеткой нейронной сети:

  • разработка нечетких нейронных моделей на основе биологических ней­ронов;
  • модели синоптических соединений, которые вносят неопределенность в нейронные сети;
  • разработка алгоритмов обучения.

Полученное лингвистическое утверждение интерфейсный блок нечеткой ло­гики преобразует во входной вектор многоуровневой нейронной сети. Ней­ронная сеть может быть обучена вырабатывать необходимые выходные команды или решения

Многоуровневая нейронная сеть запускает интерфейсный механизм нечеткой логики.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: