Случайные величины, возможные значения которых непрерывно заполняют некоторый промежуток, называются непрерывными случайными величинами.
Удобнее всего задавать непрерывную случайную величину с помощью плотности вероятности.
Плотностью вероятности (плотностью распределения) j(х) непрерывной случайной величины X называется производная ее функции распределения, т.е. j(х) = F¢(x).
1. Математическим ожиданием непрерывной случайной величины X с плотностью распределения j (х) называется число а = М(Х), определяемое равенством:
Дисперсией D(X) непрерывной случайной величины называется математическое ожидание квадрата отклонения случайной величины от её математического ожидания:
D(Х) = М[Х-a]2, а=M(X).
Биномиальный закон распределения вероятностей.
Дискретная случайная величина X имеет биномиальный закон распределения, если она принимает значения 0,1, 2,…,m,….,n с вероятностями р(m) = Р(Х = m) = Cnm рm qn-m, где 0 < p <1,
q = 1─ р.
Биномиальный закон распределения представляет собой закон распределения числа Х = m наступлений события А в n независимых испытаниях, в каждом из которых оно может произойти с одной и той же вероятностью р.
Теорема. Математическое ожидание и дисперсия случайной величины, распределенной по биномиальному закону, даются формулами
M(X) = np, D(X) = npq.
Следствие. Математическое ожидание величины (m/n) в n независимых испытаниях, в каждом из которых оно может наступить с одной и той же вероятностью р, равно р, т.е. M(m/n) = р, D(m /n)=pq/n.
Закон распределения вероятностей Пуассона.
Дискретная случайная величина X имеет закон распределения Пуассона, если она принимает значения 0,1 2,…,m,…,n с вероятностями р(m) = Р(Х=m) =е─λ λm/m!, где λ = np.
Tеорема. Математическое ожидание и дисперсия случайной величины, распределенной по закону Пуассона, совпадают и равны параметру λ этого закона. М(Х) = λ, D(X)= λ.
Распределение Пуассона ─ частный случай биномиального закона распределения для относительно больших n и относительно малых р.






