Теоремы о функциях, непрерывных на отрезке

Рассмотрим некоторые свойства функций непрерывных на отрезке. Эти свойства приведём без доказательства.

Функцию называют непрерывной на отрезке [a,b], если она непрерывна во всех внутренних точках этого отрезка, а на его концах, т.е. в точках a и b, непрерывна соответственно справа и слева.

Теорема 1. Функция, непрерывная на отрезке [a,b], хотя бы в одной точке этого отрезка принимает наибольшее значение и хотя бы в одной – наименьшее.

*Теорема утверждает, что если функция непрерывна на отрезке [a,b], то найдётся хотя бы одна точка такая, что значение функции в этой точке будет самым большим из всех ее значений на этом отрезке: . Аналогично найдётся такая точка , в которой значение функции будет самым маленьким из всех значений на отрезке: .

Ясно, что таких точек может быть и несколько, например, на рисунке показано, что функция принимает наименьшее значение в двух точках и .

Замечание. Утверждение теоремы можно стать неверным, если рассмотреть значение функции на интервале (a,b). Действительно, если рассмотреть функцию на (0,2), то она непрерывна на этом интервале, но не достигает в нём ни наибольшего, ни наименьшего значений: она достигает этих значений на концах интервала, но концы не принадлежат нашей области.

Также теорема перестаёт быть верной для разрывных функций. Приведите пример.

Следствие. Если функция непрерывна на [a,b], то она ограничена на этом отрезке.

Теорема 2. Пусть функция непрерывна на отрезке [a,b] и на концах этого отрезка принимает значения разных знаков, тогда внутри отрезка [a,b] найдётся по крайней мере одна точка , в которой функция обращается в ноль: , где a < C< b

Эта теорема имеет простой геометрический смысл: если точки графика непрерывной функции , соответствующие концам отрезка [a,b] лежат по разные стороны от оси Ох, то этот график хотя бы в одной точке отрезка пересекает ось Ох. Разрывные функции этим свойством могут не обладать.

Эта теорема допускает следующее обобщение.

Теорема 3 (теорема о промежуточных значениях). Пусть функция непрерывна на отрезке [a,b] и , . Тогда для любого числа С, заключённого между А и В, найдётся внутри этого отрезка такая точка , что .

Эта теорема геометрически очевидна. Рассмотрим график функции . Пусть , . Тогда любая прямая , где С – любое число, заключённое между А и В, пересечёт график функции по крайней мере в одной точке. Абсцисса точки пересечения и будет тем значением , при котором .

Таким образом, непрерывная функция, переходя от одного своего значения к другому, обязательно проходит через все промежуточные значения. В частности,

Следствие. Если функция непрерывна на некотором интервале и принимает наибольшее и наименьшее значения, то на этом интервале она принимает по крайней мере один раз любое значение, заключённое между её наименьшим и наибольшим значениями.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: