Разрушение водонефтяных эмульсий

Существуют следующие способы разрушения нефтяных эмульсий:

Ø гравитационное холодное разделение (отстаивание);

Ø фильтрация;

Ø разделение в поле центробежных сил (центрифугирование);

Ø электрическое воздействие;

Ø термическое воздействие;

Ø внутритрубная деэмульсация;

Ø воздействие магнитного поля.

Отстаивание применяют при высокой обводненности нефти и осуществляют путем гравитационного осаждения диспергированных капель воды. На промыслах применяют отстойники периодического и непрерывного действия разнообразных конструкций*. В качестве отстойников периодического действия обычно используют сырьевые резервуары, при заполнении которых сырой нефтью происходит осаждение воды в их нижнюю часть. В отстойниках непрерывного действия отделение воды происходит при непрерывном прохождении обрабатываемой смеси через отстойник. В зависимости от конструкции и расположения распределительных устройств движение жидкости в отстойниках осуществляется в преобладающем направлении v горизонтально или вертикально.

Фильтрацию применяют для разрушения нестойких эмульсий. В качестве материала фильтров используются вещества, не смачиваемые водой, но смачиваемые нефтью. Поэтому нефть проникает через фильтр, а вода v нет.

Центрифугирование производят в центрифуге, которая представляет собой вращающийся с большой скоростью ротор. Эмульсия подается в ротор по полому валу. Под действием сил инерции эмульсия разделяется, так как вода и нефть имеют разные значения плотности.

Воздействие на эмульсии электрическим полем производят в электродегидраторах, снабженных электродами, к которым подводится высокое напряжение переменного тока промышленной частоты. Под действием электрического поля на противоположных концах капель воды появляются разноименные электрические заряды. В результате капли притягиваются, сливаются в более крупные и оседают на дно емкости.

Термическое воздействие на водонефтяные эмульсии заключается в том, что нефть, подвергаемую обезвоживанию, перед отстаиванием нагревают до температуры 45-80 0С. При нагревании уменьшается прочность слоев эмульгатора на поверхности капель, что облегчает их слияние. Кроме того, уменьшается вязкость нефти и увеличивается разница плотностей воды и нефти, что способствует быстрому разделению эмульсии. Подогрев осуществляют в резервуарах, теплообменниках и трубчатых печах.

Внутритрубную деэмульсацию проводят посредством добавления в эмульсию химического реагента-деэмульгатора. Это позволяет разрушать эмульсию в трубопроводе, что снижает ее вязкость и уменьшает гидравлические потери.

Для каждого состава нефти подбирают свой наиболее эффективный деэмульгатор, предварительно оценив результаты отделения пластовой воды в лабораторных условиях.

Любое органическое вещество, обладающее моющими свойствами, может с той или иной эффективностью использоваться в качестве деэмульгатора.

Существует большое количество деэмульгирующих композиций для обезвоживания и обессоливания водонефтяных эмульсий на основе*:

Ø алкилбензосульфоната кальция и алкансульфоната натрия;

Ø азотсодержащих соединений;

Ø оксиэтилированного алкилфенола и тримеров пропилена;

Ø блоксополимера окисиэтилена и пропилена;

Ø глутарового альдегида,

Ø продуктов оксиалкилирования с подвижным атомом водорода и метилдиэтилалкоксиметилом аммония метилсульфатом.

Высокоэффективные деэмульгаторы, применяемые на нефтепромыслах и нефтеперерабатывающих заводах для обезвоживания и обессоливания нефти, содержат смесь ПАВ различных структур и модификаций, которые, как правило, являются синергистами*.

Теории, объясняющие механизм действия деэмульгаторов, разделяют на две группы**:

Ø - физическая, предполагающая протекание физической адсорбции молекул деэмульгатора на коллоидных частицах, разрыхляющее и модифицирующее действие деэмульгаторов на межфазный слой, которое способствует вытеснению и миграции молекул (частиц) стабилизатора в ту или иную фазу;

Ø - химическая, основанная на предположении о преобладающей роли хемосорбции молекул деэмульгатора на компонентах защитного слоя с образованием прочных химических связей, в результате чего природные стабилизаторы нефти теряют способность эмульгировать воду.

Согласно общепринятой в настоящее время теории, разработанной под руководством академика П.А. Ребиндера, при введении ПАВ в нефтяную эмульсию на границе раздела "нефть - вода" протекают следующие процессы. ПАВ, обладая большей поверхностной активностью, вытесняет природные стабилизаторы с поверхности раздела фаз, адсорбируясь на коллоидных или грубодисперсных частицах природных стабилизаторов нефтяных эмульсий.

Молекулы деэмульгаторов изменяют смачиваемость, что способствует переходу этих частиц с границы раздела в объем водной или нефтяной фаз. В результате происходит коалесценция.

Таким образом, процесс разрушения нефтяных эмульсий является в большей степени физическим, чем химическим и зависит от:

Ø компонентного состава и свойства защитных слоев природных стабилизаторов;

Ø типа, коллоидно-химических свойств и удельного расхода применяемого деэмульгатора;

Ø температуры, интенсивности и времени перемещения нефтяной эмульсии с деэмульгатором.

Технологический эффект применения деэмульгатора заключается в обеспечении быстрого и полного отделения пластовой воды при его минимальном расходе.

Как правило, подбор высокоэффективного, оптимального для конкретной водонефтяной эмульсии деэмульгатора осуществляют эмпирически*. Это обусловлено тем, что в зависимости от технологии добычи и подготовки нефти, ее химического состава, физико-химических свойств и обводненности, минерализации пластовой воды, наличия в ней механических примесей и других факторов к деэмульгатору предъявляются специфические требования.

Кроме того, проблема подбора оптимального деэмульгатора возникает вследствие роста обводненности нефти и изменения состава стабилизаторов водонефтяной эмульсии. Последнее обусловлено применением химических реагентов для повышения нефтеотдачи пласта, обеспечения его гидроразрыва, а также для защиты промыслового оборудования от АСПО.

На нефтегазодобывающих предприятиях нашел также применение метод предотвращения образования стойких эмульсий (метод искусственного увеличения обводненности нефти.

Сущность метода заключается в возврате на прием насоса некоторой части добываемой воды, расслоившейся в отстойной расширительной камере или в поле центробежных сил. Избыток водной фазы, образовавшейся в насосе, приводит к переходу водонефтяной смеси из одной структуры потока в другую. Вязкость образовавшейся прямой эмульсии в десятки и сотни раз меньше вязкости обратных эмульсий.

В соответствии с этим резко снижается и стойкость прямых эмульсий, что создает благоприятные условия для отделения водной фазы и возвращения некоторого ее объема на прием насоса. Подачу оборотной воды на прием насоса можно осуществить самоподливом в затрубное пространство скважины, без применения дополнительных перекачивающих органов.

Метод самоподлива предполагает потерю производительности установки за счет рециркулируемой части водной фазы. Однако многократное снижение вязкости нефти в колонне труб позволяет существенно увеличить коэффициент подачи установок, что не только компенсирует потерю, но и в ряде случаев повышает производительность насосов.

Предупреждение образования стойких эмульсий в скважинах с механизированной добычей позволяет также снижать давление в системах промыслового сбора нефти и газа и улучшать условия разрушения эмульсий в пунктах подготовки нефти.

5.3.2. Аппараты для магнитной обработки
водонефтяных эмульсий типа УМП

Электромагнитные установки УМП (ТУ 39-80400-007-99) разработаны авторами при участии А.Б. Лаптева, В.И. Максимочкина, В.С. Кузнецова для обработки водонефтяных эмульсий и вод системы ППД.

Разработано три типа установок, отличающиеся конструкцией индуктора и блоком управления.

Установка УМП-108-014 разработана по заданию ОАО "Белкамнефть" для обработки водонефтяной эмульсии Вятской площади Арланского месторождения и включает индуктор, соединенный кабелем с блоком управления (рис. 1).

блок управления индуктор установки

Рис. 1 Электромагнитная установка УМП-108-014:

На рис.1 представлен блок управления, который состоит из генератора гармонических колебаний с фиксированными частотами, усилителя мощности и батареи конденсаторов.

Технические характеристики УМП-108-014:

1. Установка позволяет создавать магнитное поле на 10 фиксированных частотах: 10, 20, 30, 40, 50, 60, 70, 80, 90 и 100 Гц.

2. Индуктор обеспечивает создание магнитного поля в зазоре шириной не более 110 мм.

3. Максимальное значение индукции магнитного поля в зазоре электромагнита при внутреннем сердечнике представлены в табл. 3.

4. Постоянная установки по току возбуждения: 2 мТл/мкА.

5. Погрешность частоты не превышает 1 Гц.

6. Максимальное значение напряжения на выходе усилителя мощности 50 В, максимально допустимый ток 7 А кратковременно.

7. Питание: 220 В, 50 Гц.

8. Температура окружающего воздуха: для блока управления - -10 - +20 оС; для индуктора -50 - +50 0С.

Индуктор установки состоит из магнитопровода, изготовленного из трансформаторного железа, между полюсами которого помещена труба из нержавеющей стали. Внутри трубы размещена вставка из трансформаторного железа- магнитный сердечник. Для возбуждения магнитного поля на полюса надеты катушки из провода диаметром 1,2 мм по 400 витков.

Рис. 2 Схема установки УМП-108-014

На рис. 3  представлены значение индукции магнитного поля от частоты.

Рис. 3 Значение индукции от частот

Схемотехнически установка УМП-108-014 выполнена с использованием блочной архитектуры (рис. 4).

Блок питания
генератор усилитель

Рис. 4 Электрическая схема установки УМП-108-014

Блоки выполнены в виде отдельных плат и соединены между собой двенадцатижильным кабелем с разъемами.

Блок питания выполнен по трансформаторной схеме с общей точкой и вырабатывает три значения двухполярных напряжений: 12вольт стабилизированное, применяемое для питания задающего генератора; 50 и 60 вольт нестабилизированное, применяемые для питания оконечного усилителя мощности. Все три цепи питания гальванически развязаны как с питающей сетью, так и друг с другом. Задающий генератор выполнен в виде прямого тонового генератора с дискретно регулируемой RC-цепочкой в цепи положительной обратной связи.

Для предотвращения возможного срыва генерации в цепи отрицательной обратной связи установлен управляемый значением выходного напряжения источник тока. Блок оконечного усилителя выполнен по линейной бестрансформаторной схеме. Для увеличения выходной мощности и к.п.д. оконечного каскада,последний выполнен на полевых транзисторах высокой мощности по двухтактной двухступенчатой схеме класса А. Так как к данному блоку предъявляются не слишком высокие требования в области внесения искажений (коэффициент гармоник допустим в пределах 3-5 %), то коррекция в цепи отрицательной обратной связи ограничена введением местных ООС на каждом каскаде усиления.

Установка УМП-159-006 (рис.5) состоит из блока управления и соединяемого с ним внешнего индуктора с сердечником, врезаемого в трубопровод.

блок управления;
индуктор установки

Рис. 5 Электромагнитная установка УМП-159

Поток жидкости обрабатывается переменным магнитным полем, направленным поперек потока. Форма изменения напряженности магнитного поля- синусоида. Индуктор соединяется с блоком управления двухжильным кабелем.

Индуктор (рис.6) состоит из магнитопровода, изготовленного из трансформаторного железа, между полюсами которого помещается труба из стеклопластика.

На рис.6 прдставлены конструктивные характеристики индикатора Электромагнитная установка УМП-159

Принятые обозначения: 1- сердечник (внутренняя часть магнитопровода), 2- труба из немагнитного материала, 3 - обмотка, 4 - торцевая часть магнитопровода, 5 - внешняя часть магнитопровода.

Рис. 6 Конструктивные характеристики индикатора Электромагнитная установка УМП-159

Внутри трубы помещается сердечник из трансформаторного железа. Возбуждение магнитного поля в контуре производиться обмоткой из медного провода диаметром 0,6 мм в 1200 витков.

Блок управления состоит из генератора гармонических колебаний с фиксированными частотами, усилителя мощности и батареи конденсаторов, которая последовательно соединяется с индуктором (блок-схема установки УМП-159-006 на рис. 7).

 

Принятые обозначения1 - генератор, 2 - усилитель мощности, 3 - батарея конденсаторов, 4 - индуктор, 5- амперметр.

Рис. 7 Блок-схема установки УМП-159-006

Технические характеристики УМП-159-006:

1. Установка позволяет создавать магнитные поля дискретно на частотах 11, 15, 19, 23,27, 31 Гц.

2. Индуктор обеспечивает создание магнитного поля в кольцевом зазоре размером 35 мм между внутренним и внешним магнитопроводами.

3. Постоянная установки по току возбуждения: 26 мТл/А.

4. Погрешность частоты не превышает 0,5 Гц.

5. Максимальное значение напряжения на выходе усилителя мощности 65 В, максимально допустимый ток 6 А кратковременно.

6. Питание: 220 В, 50 Гц.

7. Температура окружающего воздуха для блока управления и индуктора -10 - +30 оС.

Установка УМП-325-005 состоит из блока управления, расположенного в металлическом корпусе с замком и соединяемого с ним внешнего индуктора с сердечником, врезаемого в трубопровод. Поток жидкости обрабатывается переменным магнитным полем с импульсным изменением напряженности, направленным поперек потока. Индуктор соединяется с блоком управления кабелем (рис. 7).

         блок управления индуктор установки

Рис. 8 Электромагнитная установка УМП-325-005

Схематический разрез конструкции индуктора представлена на рис. 9 Индикатор состоит из центрального магнитопровода 1, на который навита обмотка 2, боковых магнитопроводов 3 и магнитопровода 4, примыкающего к внутренней стенке трубы 5.

Рис. 9 Схема конструкции индуктора магнитной установки УМП

Технические характеристики электромагнитной установки УМП-325-005 приведены в таблице 9.

Таблица 9 Технические характеристики установки УМП-325-005:

Диаметр проходного канала, мм 100
Площадь перекрываемого сечения, мм2 7850
Величина магнитной индукции, Тл 0,1
Частота изменения переменного магнитного поля, Гц 10 - 100
Дискретность регулировки частоты магнитного поля, Гц 10
Максимальная мощность установки, кВт 0,3
Максимальная температура перекачиваемой жидкости, оС 100
Максимальное давление перекачиваемой жидкости, МПа до 6,4
Тип присоединения к трубопроводу Фланцевое по ГОСТ 12821-80

Электромагнит индуктора расположен непосредственно в потоке обрабатываемой жидкости, и может создавать незначительные гидравлические сопротивления.

Блок управления установки предназначен для эксплуатации в закрытых помещениях с температурой от -20 до +500 оС. (при температуре окружающего воздуха ниже-100 оС необходимо закрыть вентиляционные отверстия металлического корпуса установки).

Индуктор устанавливается на открытом воздухе (допускается заглубление) при температурах от-50 до +500 оС (при условии, что перекачиваемая жидкость имеет температуру 10.800 оС).

Так как индуктор имеет значительную массу, запрещается его установка в подвешенном состоянии. Токоввод на индукторе должен находиться в вертикальном положении. Токоввод залит для герметизации полимерной композицией. При установке индуктор подключается высоковольтным бронированным кабелем РПШ-2х2,5 длиной до 100 метров к блоку управления при отключенном питании установки.

Сечение каждой жилы кабеля определяется по табл. 10.

Таблица 10 Зависимость сечения кабеля от расстояния индукторvблок управления

Расстояние от индуктора до блока управления, метров Сечение каждой жилы кабеля, мм
1-10 3
10-25 4
25-50 6
50-100 8

 

Установка питается от трехфазной четырехпроводной электрической сети (подключается идущим в комплекте кабелем РПШ-4х2,5). Хотя работоспособность сохраняется и при питании от однофазной сети, подобный режим работы ведет к перегреву цепей гальванической развязки и выходу установки из строя.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: